Cooperative interaction between Ca2+ and beta,gamma-methylene adenosine triphosphate in their binding to fragmented sarcoplasmic reticulum from bullfrog skeletal muscle. 1986

Y Ogawa, and N Kurebayashi, and H Harafuji

In order to obtain a better understanding of the mechanism of the function of fragmented sarcoplasmic reticulum (FSR), we examined the binding of beta,gamma-methylene [3H]adenosine triphosphate (AMPOPCP), an unhydrolyzable ATP analogue, and 45Ca to FSR from bullfrog skeletal muscle. In medium containing 100 mM KCl and 20 mM Tris-maleate (pH 6.80) on ice, FSR has a single class of [3H]AMPOPCP-binding sites which amount to 4.4-8.6 nmol/mg protein (usually about 7 nmol/mg protein). The affinity was in the range of 6.2-12.3 X 10(3) M-1 in the absence of Ca2+. Ca2+ increased the affinity for AMPOPCP without changing the total number of binding sites, whereas Mg2+ decreased it. The change of the affinity is due to the direct effect of Ca2+ and Mg2+ on FSR. The possibility that Mg-AMPOPCP, Ca-AMPOPCP, and free AMPOPCP might have different affinities to FSR is excluded. The extent of Ca2+-induced enhancement in AMPOPCP binding is dependent not only on Ca2+ concentration but also on the concentration of AMPOPCP. The binding sites for AMPOPCP are likely to be the ATP-binding sites on Ca2+-ATPase protein on the basis of several lines of evidence, including competition between ATP, ADP, or AMP. FSR also binds 7-13 nmol Ca/mg protein (usually about 8 nmol/mg protein) with the affinity of 4-14 X 10(4) M-1 in the absence of the nucleotide in a similar medium containing 4 mM MgCl2. The ratio of Ca-binding sites to AMPOPCP-binding sites is mostly 1, but occasionally 2, corresponding to the ratio of Ca accumulated to ATP hydrolyzed by frog FSR. In the presence of a sufficient amount of the nucleotide, the affinity for Ca2+ was also increased. These findings are well explained by the random sequence binding model of Ca2+ and AMPOPCP, which bind to FSR with positive cooperative interaction between them. However, high concentrations of the nucleotide result in a negative cooperative interaction in the nucleotide binding in the presence of Ca2+, whereas no cooperativity is observed in the absence of Ca2+. Stimulation of Ca binding by AMPOPCP is also correspondingly affected. Comparative studies show that rabbit skeletal muscle FSR, in contrast to the frog one, shows negative cooperativity in its interactions with Ca2+ and AMPOPCP under some conditions and that the ratio of Ca-binding sites to AMPOPCP-binding sites is 2, corresponding to the well-known stoichiometry with ATP.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011892 Rana catesbeiana A species of the family Ranidae (true frogs). The only anuran properly referred to by the common name "bullfrog", it is the largest native anuran in North America. Bullfrog,Bullfrogs,Rana catesbeianas,catesbeiana, Rana
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000227 Adenine Nucleotides Adenine Nucleotide,Adenosine Phosphate,Adenosine Phosphates,Nucleotide, Adenine,Nucleotides, Adenine,Phosphate, Adenosine,Phosphates, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding

Related Publications

Y Ogawa, and N Kurebayashi, and H Harafuji
November 1976, Journal of biochemistry,
Y Ogawa, and N Kurebayashi, and H Harafuji
September 1977, Biochemical and biophysical research communications,
Y Ogawa, and N Kurebayashi, and H Harafuji
April 1996, The Journal of biological chemistry,
Y Ogawa, and N Kurebayashi, and H Harafuji
June 1990, Journal of biochemistry,
Y Ogawa, and N Kurebayashi, and H Harafuji
March 1978, Annals of neurology,
Y Ogawa, and N Kurebayashi, and H Harafuji
November 1982, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Y Ogawa, and N Kurebayashi, and H Harafuji
December 1998, European journal of pharmacology,
Y Ogawa, and N Kurebayashi, and H Harafuji
May 1977, The Journal of biological chemistry,
Copied contents to your clipboard!