The Heartwarming Effect of Brown Adipose Tissue. 2022

Kelsey M Pinckard, and Kristin I Stanford
Department of Physiology and Cell Biology (K.M.P., K.I.S.), Center for Diabetes and Metabolism Research Center, Dorothy M. Davis Heart and Lung Research Institute (K.M.P., K.I.S.), and Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio (K.I.S.).

Brown adipose tissue (BAT) is a metabolically active tissue that improves glucose metabolism and protects against the development of type 2 diabetes and obesity. However, the role of BAT to improve cardiovascular health has only recently been investigated. In this review, we discuss multiple mechanisms through which both the thermogenic and endocrine functions of BAT mediate cardiac health. β-adrenergic stimulation activates the thermogenic function of BAT, resulting in reduced circulating lipids and glucose, and enhanced clearance of hepatic cholesterol-enriched remnants leading to reduced atherosclerotic region size. Additionally, the thermogenic role of BAT has been implicated in activation of the protein kinase B-extracellular-signal-regulated kinase (ERK) 1/2 pathway after myocardial infarction (MI), contributing to reduced injury size. The endocrine function of BAT has also been implicated to improve both systemic metabolic health and cardiac health. Specifically, the batokines fibroblast growth factor 21 (FGF21) and 12,13-diHOME improve cardiovascular health via reduced hypertension, hypertrophy and MI injury size (FGF21) or by directly improving cardiac function via calcium cycling (12,13-diHOME). Finally, we discuss relevant pharmacological treatment methods currently aiming to activate BAT, typically through sympathetic activation. SIGNIFICANCE STATEMENT: This mini-review discusses the role of BAT to improve cardiac health via thermogenic and endocrine effects in both rodents and humans and highlights the need for therapeutic methods which activate or mimic BAT activity.

UI MeSH Term Description Entries
D009765 Obesity A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
D002001 Adipose Tissue, Brown A thermogenic form of adipose tissue composed of BROWN ADIPOCYTES. It is found in newborns of many species including humans, and in hibernating mammals. Brown fat is richly vascularized, innervated, and densely packed with MITOCHONDRIA which can generate heat directly from the stored lipids. Brown Fat,Hibernating Gland,Brown Adipose Tissue,Fat, Brown,Tissue, Brown Adipose
D003924 Diabetes Mellitus, Type 2 A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY. Diabetes Mellitus, Adult-Onset,Diabetes Mellitus, Ketosis-Resistant,Diabetes Mellitus, Maturity-Onset,Diabetes Mellitus, Non-Insulin-Dependent,Diabetes Mellitus, Slow-Onset,Diabetes Mellitus, Stable,MODY,Maturity-Onset Diabetes Mellitus,NIDDM,Diabetes Mellitus, Non Insulin Dependent,Diabetes Mellitus, Noninsulin Dependent,Diabetes Mellitus, Noninsulin-Dependent,Diabetes Mellitus, Type II,Maturity-Onset Diabetes,Noninsulin-Dependent Diabetes Mellitus,Type 2 Diabetes,Type 2 Diabetes Mellitus,Adult-Onset Diabetes Mellitus,Diabetes Mellitus, Adult Onset,Diabetes Mellitus, Ketosis Resistant,Diabetes Mellitus, Maturity Onset,Diabetes Mellitus, Slow Onset,Diabetes, Maturity-Onset,Diabetes, Type 2,Ketosis-Resistant Diabetes Mellitus,Maturity Onset Diabetes,Maturity Onset Diabetes Mellitus,Non-Insulin-Dependent Diabetes Mellitus,Noninsulin Dependent Diabetes Mellitus,Slow-Onset Diabetes Mellitus,Stable Diabetes Mellitus
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D022722 Thermogenesis The generation of heat in order to maintain body temperature. The uncoupled oxidation of fatty acids contained within brown adipose tissue and SHIVERING are examples of thermogenesis in MAMMALS. Heat Production,Adaptive Thermogenesis,Facultative Thermogenesis,Nonshivering Thermogenesis,Production, Heat,Thermogeneses,Thermogenesis, Adaptive,Thermogenesis, Facultative,Thermogenesis, Nonshivering

Related Publications

Kelsey M Pinckard, and Kristin I Stanford
October 1966, Il Policlinico. Sezione pratica,
Kelsey M Pinckard, and Kristin I Stanford
January 2018, Frontiers in physiology,
Kelsey M Pinckard, and Kristin I Stanford
August 2016, Best practice & research. Clinical endocrinology & metabolism,
Kelsey M Pinckard, and Kristin I Stanford
May 1989, La Revue du praticien,
Kelsey M Pinckard, and Kristin I Stanford
July 1965, Lancet (London, England),
Kelsey M Pinckard, and Kristin I Stanford
January 2011, The Journal of perinatal & neonatal nursing,
Kelsey M Pinckard, and Kristin I Stanford
February 1970, The American journal of physiology,
Kelsey M Pinckard, and Kristin I Stanford
July 1997, Sheng li ke xue jin zhan [Progress in physiology],
Kelsey M Pinckard, and Kristin I Stanford
January 1969, Nihon seirigaku zasshi. Journal of the Physiological Society of Japan,
Kelsey M Pinckard, and Kristin I Stanford
May 1971, The Journal of physiology,
Copied contents to your clipboard!