Maintenance of granulopoiesis in long-term bone marrow cultures from W/Wv mice and effects of lipopolysaccharide on granulopoiesis in culture. 1987

T Kirikae, and M Yoshida, and H Sawada, and H Tezuka, and Y Kitamura, and K J Mori

An attempt was made to establish long-term cultures of marrow cells from genetically anaemic W/Wv mice. Two batches of horse sera were used. One batch of horse serum (HS-lot A) supported long-term maintenance (up to 20 weeks) of granulopoiesis in vitro. The number of suspension cells in W/Wv marrow culture was maintained at the same level as that in the control +/+ culture, but the number of granulocyte-macrophage progenitor cells (GM-CFC) and the ratio of immature to mature granulocytes were at a lower level than those in +/+ culture. These data suggest that haemopoietic progenitors in W/Wv cultures maintain a higher level of differentiation, and hence an increased self-renewal than those in +/+ cultures. Another batch of horse serum (HS-lot B) was less effective in the maintenance of the cultures, and the cultures deteriorated within 10 weeks. Addition of bacterial lipopolysaccharide (LPS) induced increased granulopoiesis in +/+ cultures, whereas such treatment resulted in the depletion of suspension cells in W/Wv cultures. The results suggest that haemopoietic cells of W/Wv mouse cannot cope with the strong stimulus for differentiation that occurs after the administration of LPS, although the cells can continue a moderately increased self-renewal and differentiation, as indicated by the results in the culture with HS-lot A.

UI MeSH Term Description Entries
D007377 Interleukin-3 A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells. Burst-Promoting Factor, Erythrocyte,Colony-Stimulating Factor 2 Alpha,Colony-Stimulating Factor, Mast-Cell,Colony-Stimulating Factor, Multipotential,Erythrocyte Burst-Promoting Factor,IL-3,Mast-Cell Colony-Stimulating Factor,Multipotential Colony-Stimulating Factor,P-Cell Stimulating Factor,Eosinophil-Mast Cell Growth-Factor,Hematopoietin-2,Burst Promoting Factor, Erythrocyte,Colony Stimulating Factor, Mast Cell,Colony Stimulating Factor, Multipotential,Eosinophil Mast Cell Growth Factor,Erythrocyte Burst Promoting Factor,Hematopoietin 2,Interleukin 3,Multipotential Colony Stimulating Factor,P Cell Stimulating Factor
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D001769 Blood The body fluid that circulates in the vascular system (BLOOD VESSELS). Whole blood includes PLASMA and BLOOD CELLS.
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003115 Colony-Stimulating Factors Glycoproteins found in a subfraction of normal mammalian plasma and urine. They stimulate the proliferation of bone marrow cells in agar cultures and the formation of colonies of granulocytes and/or macrophages. The factors include INTERLEUKIN-3; (IL-3); GRANULOCYTE COLONY-STIMULATING FACTOR; (G-CSF); MACROPHAGE COLONY-STIMULATING FACTOR; (M-CSF); and GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR; (GM-CSF). MGI-1,Macrophage-Granulocyte Inducer,Colony Stimulating Factor,Colony-Stimulating Factor,MGI-1 Protein,Myeloid Cell-Growth Inducer,Protein Inducer MGI,Cell-Growth Inducer, Myeloid,Colony Stimulating Factors,Inducer, Macrophage-Granulocyte,Inducer, Myeloid Cell-Growth,MGI 1 Protein,MGI, Protein Inducer,Macrophage Granulocyte Inducer,Myeloid Cell Growth Inducer
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D006098 Granulocytes Leukocytes with abundant granules in the cytoplasm. They are divided into three groups according to the staining properties of the granules: neutrophilic, eosinophilic, and basophilic. Mature granulocytes are the NEUTROPHILS; EOSINOPHILS; and BASOPHILS. Granulocyte
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis

Related Publications

T Kirikae, and M Yoshida, and H Sawada, and H Tezuka, and Y Kitamura, and K J Mori
June 1985, Blood,
T Kirikae, and M Yoshida, and H Sawada, and H Tezuka, and Y Kitamura, and K J Mori
December 1984, Experimental hematology,
T Kirikae, and M Yoshida, and H Sawada, and H Tezuka, and Y Kitamura, and K J Mori
December 1987, The Journal of laboratory and clinical medicine,
T Kirikae, and M Yoshida, and H Sawada, and H Tezuka, and Y Kitamura, and K J Mori
August 1986, Experimental hematology,
T Kirikae, and M Yoshida, and H Sawada, and H Tezuka, and Y Kitamura, and K J Mori
January 1984, Leukemia research,
T Kirikae, and M Yoshida, and H Sawada, and H Tezuka, and Y Kitamura, and K J Mori
November 1984, International journal of cell cloning,
T Kirikae, and M Yoshida, and H Sawada, and H Tezuka, and Y Kitamura, and K J Mori
November 1984, International journal of cell cloning,
T Kirikae, and M Yoshida, and H Sawada, and H Tezuka, and Y Kitamura, and K J Mori
February 1981, Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society,
T Kirikae, and M Yoshida, and H Sawada, and H Tezuka, and Y Kitamura, and K J Mori
September 1986, International journal of cell cloning,
T Kirikae, and M Yoshida, and H Sawada, and H Tezuka, and Y Kitamura, and K J Mori
January 1982, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Copied contents to your clipboard!