Protein kinase C-dependent and -independent pathways of proto-oncogene induction in human astrocytoma cells. 1987

P J Blackshear, and D J Stumpo, and J K Huang, and R A Nemenoff, and D H Spach

We compared the abilities of the muscarinic agonist carbachol, epidermal growth factor (EGF), and phorbol 12-myristate 13-acetate (PMA) to induce proto-oncogene mRNA accumulation and other cellular responses in normal and protein kinase C-deficient 1321-N1 human astrocytoma cells. PMA, carbachol, and EGF all stimulated rapid accumulation of mRNA for the proto-oncogenes c-fos and c-myc in the normal cells; in the protein kinase C-deficient cells, carbachol and EGF, but not PMA, retained this effect, which was not mimicked by the calcium ionophore A23187. Both carbachol and PMA activated protein kinase C in these cells, as evidenced by the stimulated phosphorylation of an acidic Mr 80,000 protein kinase C substrate protein with phosphoamino acid and peptide map identity. This response was mimicked by several other neurotransmitters in these cells, including epinephrine, histamine, oxotremorine, and serotonin, and was abolished in cells made protein kinase C-deficient by preincubation with high concentrations of PMA. Both PMA and carbachol promoted the phosphorylation of the ribosomal protein S6 and activated an S6 protein kinase in the normal but not in the protein kinase C-deficient cells. EGF, in contrast, did not appear to activate protein kinase C, but promoted the phosphorylation of S6 and activation of the S6 kinase in both normal and protein kinase C-deficient cells. We conclude that, in 1321-N1 cells, induction of c-fos and c-myc mRNA can occur through a protein kinase C-dependent pathway and one or more independent pathways, exemplified by the responses to carbachol and EGF in the protein kinase C-deficient cells.

UI MeSH Term Description Entries
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011519 Proto-Oncogenes Normal cellular genes homologous to viral oncogenes. The products of proto-oncogenes are important regulators of biological processes and appear to be involved in the events that serve to maintain the ordered procession through the cell cycle. Proto-oncogenes have names of the form c-onc. Proto-Oncogene,Proto Oncogene,Proto Oncogenes
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

P J Blackshear, and D J Stumpo, and J K Huang, and R A Nemenoff, and D H Spach
June 1999, Biochemical and biophysical research communications,
P J Blackshear, and D J Stumpo, and J K Huang, and R A Nemenoff, and D H Spach
February 1993, Biochemical pharmacology,
P J Blackshear, and D J Stumpo, and J K Huang, and R A Nemenoff, and D H Spach
January 1992, Journal of cardiovascular pharmacology,
P J Blackshear, and D J Stumpo, and J K Huang, and R A Nemenoff, and D H Spach
May 1997, Journal of immunology (Baltimore, Md. : 1950),
P J Blackshear, and D J Stumpo, and J K Huang, and R A Nemenoff, and D H Spach
January 1996, European journal of cancer (Oxford, England : 1990),
P J Blackshear, and D J Stumpo, and J K Huang, and R A Nemenoff, and D H Spach
December 1996, Molecular carcinogenesis,
P J Blackshear, and D J Stumpo, and J K Huang, and R A Nemenoff, and D H Spach
January 1998, The Journal of biological chemistry,
P J Blackshear, and D J Stumpo, and J K Huang, and R A Nemenoff, and D H Spach
September 1995, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
P J Blackshear, and D J Stumpo, and J K Huang, and R A Nemenoff, and D H Spach
February 1996, Biochemical Society transactions,
P J Blackshear, and D J Stumpo, and J K Huang, and R A Nemenoff, and D H Spach
July 1996, The Journal of biological chemistry,
Copied contents to your clipboard!