Cryoglobulinemia induced by monoclonal immunoglobulin G rheumatoid factors derived from autoimmune MRL/MpJ-lpr/lpr mice. 1987

Y Gyotoku, and M Abdelmoula, and F Spertini, and S Izui, and P H Lambert

A MRL strain bearing the autosomal recessive mutant gene, lpr (lymphoproliferation), spontaneously develops, in addition to a lupus-like syndrome, unique serological and pathological manifestations. Production of high titers of IgG rheumatoid factors (RF) may be related to the formation of extremely large amounts of cryoglobulins and the development of tissue lesions such as necrotizing polyarteritis, arthritis, and glomerulonephritis. To analyze more directly the relationship of IgG RF to the development of cryoglobulins and tissue injuries, we have established four monoclonal IgG RF secreting hybridomas from unimmunized MRL-lpr/lpr mice and determined their pathogenic effects in normal strains of mice. All the monoclonal IgG RF obtained in this study were of the IgG3 subclass and generated cryoglobulins. However, the fact that not only IgG3 Rf monoclonals but also four of five non-RF IgG3 monoclonals were able to form cryoglobulins, which were composed exclusively of each IgG3 monoclonal, indicates that the IgG3 molecule has a unique physicochemical property to self-associate via nonimmunological interaction and the ability to form cryoglobulins. When the in vivo pathogenic activities of these IgG3 RF and non-RF monoclonals were examined, three of IgG3 RF monoclonals with the specificity to IgG2a were able to induce extensive pathologic manifestations including peripheral vasculitis and glomerulonephritis characteristic of patients with cryoglobulinemia. Our results indicate that the IgG3 itself, independently of its specificity, could be a potential source of cryoglobulins and IgG3 RF, combined with its activity of cryoglobulin formation, may play a significant role in the development of glomerulonephritis and cutaneous vascular lesions of ears and foot pads observed frequently in aged MRL-lpr/lpr mice.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007525 Isoelectric Focusing Electrophoresis in which a pH gradient is established in a gel medium and proteins migrate until they reach the site (or focus) at which the pH is equal to their isoelectric point. Electrofocusing,Focusing, Isoelectric
D008180 Lupus Erythematosus, Systemic A chronic, relapsing, inflammatory, and often febrile multisystemic disorder of connective tissue, characterized principally by involvement of the skin, joints, kidneys, and serosal membranes. It is of unknown etiology, but is thought to represent a failure of the regulatory mechanisms of the autoimmune system. The disease is marked by a wide range of system dysfunctions, an elevated erythrocyte sedimentation rate, and the formation of LE cells in the blood or bone marrow. Libman-Sacks Disease,Lupus Erythematosus Disseminatus,Systemic Lupus Erythematosus,Disease, Libman-Sacks,Libman Sacks Disease
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D003166 Complement Activating Enzymes Enzymes that activate one or more COMPLEMENT PROTEINS in the complement system leading to the formation of the COMPLEMENT MEMBRANE ATTACK COMPLEX, an important response in host defense. They are enzymes in the various COMPLEMENT ACTIVATION pathways. Activating Enzymes, Complement,Enzymes, Complement Activating
D003172 Complement C1 The first complement component to act in the activation of CLASSICAL COMPLEMENT PATHWAY. It is a calcium-dependent trimolecular complex made up of three subcomponents: COMPLEMENT C1Q; COMPLEMENT C1R; and COMPLEMENT C1S at 1:2:2 ratios. When the intact C1 binds to at least two antibodies (involving C1q), C1r and C1s are sequentially activated, leading to subsequent steps in the cascade of COMPLEMENT ACTIVATION. C1 Complement,Complement 1,Complement Component 1,C1, Complement,Complement, C1,Component 1, Complement
D003449 Cryoglobulinemia A condition characterized by the presence of abnormal quantities of CRYOGLOBULINS in the blood. Upon cold exposure, these abnormal proteins precipitate into the microvasculature leading to restricted blood flow in the exposed areas. Cryoglobulinemias
D005921 Glomerulonephritis Inflammation of the renal glomeruli (KIDNEY GLOMERULUS) that can be classified by the type of glomerular injuries including antibody deposition, complement activation, cellular proliferation, and glomerulosclerosis. These structural and functional abnormalities usually lead to HEMATURIA; PROTEINURIA; HYPERTENSION; and RENAL INSUFFICIENCY. Bright Disease,Kidney Scarring,Glomerulonephritides,Scarring, Kidney
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal

Related Publications

Y Gyotoku, and M Abdelmoula, and F Spertini, and S Izui, and P H Lambert
September 1983, The Journal of experimental medicine,
Y Gyotoku, and M Abdelmoula, and F Spertini, and S Izui, and P H Lambert
February 2000, Journal of immunological methods,
Y Gyotoku, and M Abdelmoula, and F Spertini, and S Izui, and P H Lambert
January 1987, Microbiology and immunology,
Y Gyotoku, and M Abdelmoula, and F Spertini, and S Izui, and P H Lambert
July 1985, Clinical and experimental immunology,
Y Gyotoku, and M Abdelmoula, and F Spertini, and S Izui, and P H Lambert
October 2003, Biochemistry. Biokhimiia,
Y Gyotoku, and M Abdelmoula, and F Spertini, and S Izui, and P H Lambert
February 1992, Clinical and experimental immunology,
Y Gyotoku, and M Abdelmoula, and F Spertini, and S Izui, and P H Lambert
February 2006, European journal of pharmacology,
Y Gyotoku, and M Abdelmoula, and F Spertini, and S Izui, and P H Lambert
September 2006, FEBS letters,
Y Gyotoku, and M Abdelmoula, and F Spertini, and S Izui, and P H Lambert
July 1997, Journal of immunology (Baltimore, Md. : 1950),
Y Gyotoku, and M Abdelmoula, and F Spertini, and S Izui, and P H Lambert
January 2018, Lupus,
Copied contents to your clipboard!