Arrangement of myosin heads in relaxed thick filaments from frog skeletal muscle. 1986

M Stewart, and R W Kensler

The distribution of myosin heads on the surface of frog skeletal muscle thick filaments has been determined by computer processing of electron micrographs of isolated filaments stained with tannic acid and uranyl acetate. The heads are arranged in three strands but not in a strictly helical manner and so the structure has cylindrical symmetry. This accounts for the "forbidden" meridional reflections seen in diffraction patterns. Each layer-line therefore represents the sum of terms of Bessel orders 0, +/- 3, +/- 6, +/- 9 and so on. These terms interact so that, unlike a helical object without terms from overlapping Bessel orders, as the azimuth is changed, the amplitude on a layer-line at a particular radius varies substantially and its phase does not alter linearly. Consequently, a three-dimensional reconstruction cannot be produced from a single view. We have therefore used tilt series of three individual filaments to decompose the data on layer-lines 0 to 6 into terms of Bessel orders up to +/- 9 using a least-squares procedure. These data had a least-squares residual of 0.32 and enabled a three-dimensional reconstruction to be obtained at a nominal resolution of 6 nm. This showed, at a radius of about 10 nm, three strands of projecting morphological units with three units spaced along each strand every 42.9 nm axially. We have identified these units with pairs of myosin heads. Successive units along a strand are perturbed axially, azimuthally and radially from the positions expected if the structure was perfectly helical. This may simply be a consequence of steric restrictions in packing the heads on the thick filament surface, but could also reflect an underlying non-helical arrangement of myosin tails, which would be consistent with the thick filament shaft being constructed from three subfilaments in which the tails were arranged regularly. There was also material at a radius of about 6 nm spaced 42.9 nm axially, which we tentatively identified with accessory proteins. The filament shaft had a pronounced pattern of axial staining.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

M Stewart, and R W Kensler
August 1985, Journal of molecular biology,
M Stewart, and R W Kensler
October 1991, Journal of muscle research and cell motility,
M Stewart, and R W Kensler
November 1988, The Journal of cell biology,
M Stewart, and R W Kensler
March 1983, Nature,
M Stewart, and R W Kensler
April 1988, Nature,
M Stewart, and R W Kensler
October 1997, Journal of muscle research and cell motility,
M Stewart, and R W Kensler
August 1977, Science (New York, N.Y.),
M Stewart, and R W Kensler
February 1986, The Journal of cell biology,
Copied contents to your clipboard!