Activation of murine T lymphocytes with monoclonal antibodies: detection on Lyt-2+ cells of an antigen not associated with the T cell receptor complex but involved in T cell activation. 1987

O Leo, and M Foo, and D M Segal, and E Shevach, and J A Bluestone

A new T cell molecule defined by the mAb 143-4-2 has been identified that is involved in T cell activation. The expression of the 143-4-2-defined epitope is linked to the previously characterized Ly-6 locus and restricted to bone marrow cells and to a subset of peripheral Lyt-2+ cells. In comparison to other anti-Ly-6.2 mAb, the 143-4-2 mAb appears to be directed at an allogeneic determinant of the Ly-6.2C molecule. The anti-Ly-6.2C antibody can promote the lysis of antigen-non-bearing target cells by alloreactive CTL clones, and in the presence of cofactors (PMA or IL 2) induces a subset of Lyt-2+ cells to proliferate, perhaps through an autocrine pathway. Although the antibody described has antigen-like effects as described for anti-TcR complex reagents, studies performed with a recently derived anti-murine T3 mAb suggest that the Ly-6.2C molecule is not associated on the cell surface with components of the TcR complex. Nevertheless, cell surface expression of the TcR complex is required for optimal triggering of T cells via the Ly-6.2C molecule. Because Ly-6.2C determinants are expressed in bone marrow and not in the thymus, the possibility is considered that expression of this molecule identifies a distinct subset of extrathymically derived T cells.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000936 Antigen-Antibody Complex The complex formed by the binding of antigen and antibody molecules. The deposition of large antigen-antibody complexes leading to tissue damage causes IMMUNE COMPLEX DISEASES. Immune Complex,Antigen-Antibody Complexes,Immune Complexes,Antigen Antibody Complex,Antigen Antibody Complexes,Complex, Antigen-Antibody,Complex, Immune,Complexes, Antigen-Antibody,Complexes, Immune
D000937 Antigen-Antibody Reactions The processes triggered by interactions of ANTIBODIES with their ANTIGENS. Antigen Antibody Reactions,Antigen-Antibody Reaction,Reaction, Antigen-Antibody,Reactions, Antigen-Antibody
D000950 Antigens, Ly A group of lymphocyte surface antigens located on mouse LYMPHOCYTES. Specific Ly antigens are useful markers for distinguishing subpopulations of lymphocytes. Ly Antigens

Related Publications

O Leo, and M Foo, and D M Segal, and E Shevach, and J A Bluestone
August 1987, Journal of immunology (Baltimore, Md. : 1950),
O Leo, and M Foo, and D M Segal, and E Shevach, and J A Bluestone
August 1987, Journal of immunology (Baltimore, Md. : 1950),
O Leo, and M Foo, and D M Segal, and E Shevach, and J A Bluestone
March 1987, Journal of immunology (Baltimore, Md. : 1950),
O Leo, and M Foo, and D M Segal, and E Shevach, and J A Bluestone
July 1982, Journal of immunology (Baltimore, Md. : 1950),
O Leo, and M Foo, and D M Segal, and E Shevach, and J A Bluestone
January 1992, Proceedings of the National Academy of Sciences of the United States of America,
O Leo, and M Foo, and D M Segal, and E Shevach, and J A Bluestone
February 1989, Transplantation proceedings,
O Leo, and M Foo, and D M Segal, and E Shevach, and J A Bluestone
May 1988, Journal of immunology (Baltimore, Md. : 1950),
O Leo, and M Foo, and D M Segal, and E Shevach, and J A Bluestone
January 1985, Nature,
O Leo, and M Foo, and D M Segal, and E Shevach, and J A Bluestone
April 1993, Japanese journal of cancer research : Gann,
O Leo, and M Foo, and D M Segal, and E Shevach, and J A Bluestone
April 1983, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!