A velocity-dependent shortening depression in the development of the force-velocity relation in frog muscle fibres. 1986

F Colomo, and V Lombardi, and G Piazzesi

During the onset of activation in isolated frog muscle fibres the development of the force-velocity (T-V) relation was determined by imposing single and double ramp releases. The experiments were performed at 3.5-6 degrees C or 19-22 degrees C and at a starting sarcomere length of about 2.25 micron. A velocity- and time-dependent shortening deactivation was shown to exist during the development of contraction. It was found that, early during the tetanus rise, at submaximal levels of activation, the values of T (the steady force exerted by the muscle fibres at any velocity of shortening V lower than V0) were significantly affected by previous conditioning shortening. Conditioning shortening at lower speeds led to potentiation of T and, at higher speeds, to depression. Both these effects were independent of the amount of shortening and, in addition, were not present at the tetanus plateau. At each given time or isometric tension throughout the tetanus rise the values of T. normalized for those determined at the same velocities at the tetanus plateau, were found to be inversely correlated with the actual velocities of shortening. The slope of this relation (a measure of the velocity-dependent shortening deactivation) decreased exponentially with time, attaining, in six fibres at low temperature, 10% of its initial value within 26-73 ms. The results may be explained in terms of a cross-bridge model of contraction by assuming that the rate of development of activation is controlled by the rate of release of the Ca2+ as well as by the velocity at which the muscle fibres are allowed to shorten and in turn by the actual number of attached cross-bridges.

UI MeSH Term Description Entries
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011893 Rana esculenta An edible species of the family Ranidae, occurring in Europe and used extensively in biomedical research. Commonly referred to as "edible frog". Pelophylax esculentus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic
D012518 Sarcomeres The repeating contractile units of the MYOFIBRIL, delimited by Z bands along its length. Sarcomere
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

F Colomo, and V Lombardi, and G Piazzesi
March 1990, The Journal of physiology,
F Colomo, and V Lombardi, and G Piazzesi
October 1988, The Journal of physiology,
F Colomo, and V Lombardi, and G Piazzesi
January 2000, Journal of muscle research and cell motility,
F Colomo, and V Lombardi, and G Piazzesi
July 1993, Acta physiologica Scandinavica,
F Colomo, and V Lombardi, and G Piazzesi
July 1993, The Journal of physiology,
F Colomo, and V Lombardi, and G Piazzesi
August 1983, Journal of muscle research and cell motility,
F Colomo, and V Lombardi, and G Piazzesi
February 1993, Journal of muscle research and cell motility,
F Colomo, and V Lombardi, and G Piazzesi
October 1971, The Journal of physiology,
F Colomo, and V Lombardi, and G Piazzesi
August 2014, Acta physiologica (Oxford, England),
F Colomo, and V Lombardi, and G Piazzesi
August 1985, The Journal of physiology,
Copied contents to your clipboard!