The influence of free calcium on the maximum speed of shortening in skinned frog muscle fibres. 1986

F J Julian, and L C Rome, and D G Stephenson, and S Striz

The influence of [Ca2+] on the maximum velocity of shortening (Vmax) was examined in mechanically skinned Rana pipiens and Rana temporaria fibres using improved force clamps and the slack test techniques. All measurements were made at 7.5 degrees C. At low relative loads (P/P0 less than 0.1), maximally activated R. pipiens fibres shortened more rapidly than did submaximally activated fibres. At higher relative loads, however, little difference in the speed of shortening was observed. Vmax (determined by the slack test) of R. pipiens fibres increased as the level of activation increased. Over sarcomere lengths 1.8-2.1 microns it was 2.28 muscle lengths/s (m.l./s) (S.E. of mean +/- 0.25, n = 5) at 20-35% activation, 2.89 m.l./s (+/- 0.22, n = 7) at 40-60% activation, and 4.18 m.l./s (+/- 0.25, n = 6) at 100% activation. At longer sarcomere lengths (2.2-2.6 microns), higher Vmax values were observed at all levels of activation, but the influence of Ca2+ on Vmax persisted. Vmax was 3.54 m.l./s (+/- 0.41, n = 4) at 20-30% activation and 5.15 m.l./s (+/- 0.22, n = 5) at 100% activation. In R. temporaria fibres, Vmax (determined by force clamps over sarcomere lengths 1.8-2.1 micron) also increased as the level of activation increased, from 3.47 m.l./s (+/- 0.06, n = 6) at 13-29% activation to 5.62 m.l./s (+/- 0.17, n = 6) at 100% activation. Vmax was also determined (using the slack test) in mechanically and chemically skinned rabbit soleus fibres. Vmax at 15 degrees C (1.05 m.l./s, +/- 0.11, n = 5) at full activation decreased by more than 3-fold as the level of activation was reduced to 10%. We conclude that the level of activation influences the Vmax of skinned skeletal muscle fibres. This has now been demonstrated in three different preparations and by a variety of techniques. This effect is most pronounced at low relative loads, and might not be observed if there are experimental limitations which prevent making velocity measurements at low relative loads.

UI MeSH Term Description Entries
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D011896 Rana temporaria A species of the family Ranidae occurring in a wide variety of habitats from within the Arctic Circle to South Africa, Australia, etc. European Common Frog,Frog, Common European,Common European Frog,Common Frog, European,European Frog, Common,Frog, European Common
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012518 Sarcomeres The repeating contractile units of the MYOFIBRIL, delimited by Z bands along its length. Sarcomere
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

F J Julian, and L C Rome, and D G Stephenson, and S Striz
June 1983, Journal of muscle research and cell motility,
F J Julian, and L C Rome, and D G Stephenson, and S Striz
September 1982, Journal of muscle research and cell motility,
F J Julian, and L C Rome, and D G Stephenson, and S Striz
February 1981, The Journal of physiology,
F J Julian, and L C Rome, and D G Stephenson, and S Striz
October 1982, Acta physiologica Scandinavica,
F J Julian, and L C Rome, and D G Stephenson, and S Striz
June 2019, The Journal of experimental biology,
F J Julian, and L C Rome, and D G Stephenson, and S Striz
September 1985, Pflugers Archiv : European journal of physiology,
F J Julian, and L C Rome, and D G Stephenson, and S Striz
March 1998, The Journal of physiology,
F J Julian, and L C Rome, and D G Stephenson, and S Striz
August 1985, The Journal of physiology,
F J Julian, and L C Rome, and D G Stephenson, and S Striz
January 1980, Biophysics of structure and mechanism,
Copied contents to your clipboard!