Characterization of picomolar affinity binding sites for [125I]-human calcitonin gene-related peptide in rat brain and heart. 1987

H Yoshizaki, and M Takamiya, and T Okada

We have characterized picomolar affinity binding sites for human calcitonin gene-related peptide (CGRP) in rat brain and heart (atria and ventricle) membranes. By saturation analysis, apparent dissociation constant (KD) values of high affinity sites for [125I]-human CGRP are 9 approximately 15 pM (brain), 34 pM (ventricle) and 85 pM (atria). Low affinity sites with KD values of about 50 nM are found in rat brain and ventricle, but not in atria. Human and rat CGRP potently inhibited [125I]-human CGRP binding to these high affinity sites with apparent inhibition constant (Ki) values comparable to their KD values. Salmon calcitonin marginally inhibited these binding with Ki values between 0.1 microM and 1 microM. Extremely potent cardiovascular and gastrointestinal actions of CGRP might be mediated through CGRP binding sites with picomolar affinity which are similar to those we characterized in this study.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008832 Microchemistry The development and use of techniques and equipment to study or perform chemical reactions, with small quantities of materials, frequently less than a milligram or a milliliter.
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002116 Calcitonin A peptide hormone that lowers calcium concentration in the blood. In humans, it is released by thyroid cells and acts to decrease the formation and absorptive activity of osteoclasts. Its role in regulating plasma calcium is much greater in children and in certain diseases than in normal adults. Thyrocalcitonin,Calcitonin(1-32),Calcitrin,Ciba 47175-BA,Eel Calcitonin,Calcitonin, Eel,Ciba 47175 BA,Ciba 47175BA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H Yoshizaki, and M Takamiya, and T Okada
October 1985, Brain research,
H Yoshizaki, and M Takamiya, and T Okada
January 1999, Peptides,
H Yoshizaki, and M Takamiya, and T Okada
September 1992, European journal of pharmacology,
H Yoshizaki, and M Takamiya, and T Okada
January 1996, Regulatory peptides,
H Yoshizaki, and M Takamiya, and T Okada
January 1991, Molecular neurobiology,
Copied contents to your clipboard!