Comparative in vitro activity of CGP 31608, a new penem antibiotic. 1987

G M Eliopoulos, and C Wennersten, and E Reiszner, and R C Moellering

The in vitro activity of a new penem antimicrobial agent, CGP 31608, was compared with those of imipenem, SCH 34343, and several other antimicrobial agents against approximately 600 bacterial isolates. CGP 31608 was active against gram-positive organisms, including methicillin-susceptible Staphylococcus aureus (MIC for 90% of the isolates [MIC90], 0.25 microgram/ml) and penicillin-susceptible streptococci (MIC90s, less than or equal to 2 micrograms/ml). Penicillin-resistant streptococci (including enterococci) and methicillin-resistant S. aureus were more resistant to the penem. Activities of CGP 31608 against members of the family Enterobacteriaceae were remarkably uniform, with MIC90s of 8 to 16 micrograms/ml. CGP 31608 was at least as active as imipenem and ceftazidime and more active than piperacillin against Pseudomonas aeruginosa. Drug activity was not influenced by the presence of any of 10 plasmid-mediated beta-lactamases. Against strains of Serratia marcescens, Enterobacter cloacae, and P. aeruginosa with derepressible chromosomally mediated beta-lactamases, the presence of cefoxitin did not induce increased resistance to CGP 31608. The new drug was also active against anaerobes (MIC90s, 0.25 to 8 micrograms/ml), Haemophilus influenzae (MIC90s, 0.5 to 1.0 micrograms/ml), and Legionella spp. (MIC90, 2 micrograms/ml). CGP 31608 showed an antibacterial spectrum similar to those of imipenem and SCH 34343 (except that the latter is not active against P. aeruginosa) but was generally less potent than these drugs. However, CGP 31608 demonstrated more activity (MIC90) than imipenem against P. aeruginosa, Pseudomonas cepacia, and methicillin-resistant Staphylococcus epidermidis and S. aureus.

UI MeSH Term Description Entries
D007769 Lactams Cyclic AMIDES formed from aminocarboxylic acids by the elimination of water. Lactims are the enol forms of lactams. Lactam,Lactim,Lactims
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001618 beta-Lactamases Enzymes found in many bacteria which catalyze the hydrolysis of the amide bond in the beta-lactam ring. Well known antibiotics destroyed by these enzymes are penicillins and cephalosporins. beta-Lactamase,beta Lactamase,beta Lactamases
D013845 Thienamycins Beta-lactam antibiotics that differ from PENICILLINS in having the thiazolidine sulfur atom replaced by carbon, the sulfur then becoming the first atom in the side chain. They are unstable chemically, but have a very broad antibacterial spectrum. Thienamycin and its more stable derivatives are proposed for use in combinations with enzyme inhibitors. Antibiotics, Thienamycin,Thienamycin Antibiotics
D015378 Imipenem Semisynthetic thienamycin that has a wide spectrum of antibacterial activity against gram-negative and gram-positive aerobic and anaerobic bacteria, including many multiresistant strains. It is stable to beta-lactamases. Clinical studies have demonstrated high efficacy in the treatment of infections of various body systems. Its effectiveness is enhanced when it is administered in combination with CILASTATIN, a renal dipeptidase inhibitor. Imipemide,N-Formimidoylthienamycin,Imipenem Anhydrous,Imipenem, Anhydrous,MK-0787,MK0787,Anhydrous Imipenem,Anhydrous, Imipenem,MK 0787,N Formimidoylthienamycin
D047090 beta-Lactams Four-membered cyclic AMIDES, best known for the PENICILLINS based on a bicyclo-thiazolidine, as well as the CEPHALOSPORINS based on a bicyclo-thiazine, and including monocyclic MONOBACTAMS. The BETA-LACTAMASES hydrolyze the beta lactam ring, accounting for BETA-LACTAM RESISTANCE of infective bacteria. beta-Lactam,4-Thia-1-Azabicyclo(3.2.0)Heptanes,4-Thia-1-Azabicyclo(4.2.0)Octanes,beta Lactam,beta Lactams

Related Publications

G M Eliopoulos, and C Wennersten, and E Reiszner, and R C Moellering
June 1987, European journal of clinical microbiology,
G M Eliopoulos, and C Wennersten, and E Reiszner, and R C Moellering
February 1987, Antimicrobial agents and chemotherapy,
G M Eliopoulos, and C Wennersten, and E Reiszner, and R C Moellering
August 1987, The Journal of antimicrobial chemotherapy,
G M Eliopoulos, and C Wennersten, and E Reiszner, and R C Moellering
April 1987, Antimicrobial agents and chemotherapy,
G M Eliopoulos, and C Wennersten, and E Reiszner, and R C Moellering
June 1985, The Journal of antimicrobial chemotherapy,
G M Eliopoulos, and C Wennersten, and E Reiszner, and R C Moellering
February 1982, The Journal of antimicrobial chemotherapy,
G M Eliopoulos, and C Wennersten, and E Reiszner, and R C Moellering
February 1982, The Journal of antimicrobial chemotherapy,
G M Eliopoulos, and C Wennersten, and E Reiszner, and R C Moellering
August 1987, The Journal of antimicrobial chemotherapy,
G M Eliopoulos, and C Wennersten, and E Reiszner, and R C Moellering
January 1985, Antimicrobial agents and chemotherapy,
G M Eliopoulos, and C Wennersten, and E Reiszner, and R C Moellering
January 1999, Chemotherapy,
Copied contents to your clipboard!