Differential scanning calorimetric study of the thermal unfolding of Taka-amylase A from Aspergillus oryzae. 1987

H Fukada, and K Takahashi, and J M Sturtevant
Laboratory of Biophysical Chemistry, College of Agriculture, University of Osaka Prefecture, Japan.

The thermally induced unfolding of Taka-amylase A, isolated from Aspergillus oryzae, was studied by differential scanning calorimetry. The experimental curves of excess apparent specific heat vs. temperature showed a single asymmetric peak. Curve resolution indicated that this asymmetry is due to the two-state unfolding of three domains in the molecule, with dissociation of the single tightly bound Ca2+ ion occurring during the unfolding of the last domain. Further indication of the dissociation of the specifically bound Ca2+ during denaturation is afforded by the fact that the temperature of maximal excess specific heat, tm, increases with increasing protein concentration in the absence of added excess Ca2+ and with increasing Ca2+ concentration in the presence of added Ca2+. Experiments in a variety of buffers with different enthalpies of ionization indicated that 11.8 +/- 1.5 protons are lost from the protein during unfolding at pH 7.0. In apparent contradiction of this result, the value of tm was found to be essentially independent of pH in the range pH 7-8. No explanation of this anomaly is available. The enthalpy of unfolding at pH 7 and 62 degrees C in the absence of added Ca2+, corrected for the change in buffer protonation, is 2250 +/- 40 kJ mol-1 (42.5 J g-1), and the permanent change in apparent heat capacity is 36.4 +/- 4.1 kJ K-1 mol-1 (0.687 J g-1). Both of these quantities are unusually large for a globular protein.

UI MeSH Term Description Entries
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002151 Calorimetry The measurement of the quantity of heat involved in various processes, such as chemical reactions, changes of state, and formations of solutions, or in the determination of the heat capacities of substances. The fundamental unit of measurement is the joule or the calorie (4.184 joules). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000516 alpha-Amylases Enzymes that catalyze the endohydrolysis of 1,4-alpha-glycosidic linkages in STARCH; GLYCOGEN; and related POLYSACCHARIDES and OLIGOSACCHARIDES containing 3 or more 1,4-alpha-linked D-glucose units. Taka-Amylase A,alpha-Amylase,Alpha-Amylase Bayer,Maxilase,Mégamylase,alpha-1,4-D-Glucanglucanohydrolase,Alpha Amylase Bayer,AlphaAmylase Bayer,Taka Amylase A,TakaAmylase A,alpha 1,4 D Glucanglucanohydrolase,alpha Amylase,alpha Amylases
D001230 Aspergillus A genus of mitosporic fungi containing about 100 species and eleven different teleomorphs in the family Trichocomaceae.
D001236 Aspergillus oryzae An imperfect fungus present on most agricultural seeds and often responsible for the spoilage of seeds in bulk storage. It is also used in the production of fermented food or drink, especially in Japan. Eurotium oryzae
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

H Fukada, and K Takahashi, and J M Sturtevant
December 1947, The Journal of biological chemistry,
H Fukada, and K Takahashi, and J M Sturtevant
November 2005, Bioscience, biotechnology, and biochemistry,
H Fukada, and K Takahashi, and J M Sturtevant
April 1998, Protein science : a publication of the Protein Society,
H Fukada, and K Takahashi, and J M Sturtevant
June 2021, Journal of bioscience and bioengineering,
H Fukada, and K Takahashi, and J M Sturtevant
November 1992, Biochemistry,
H Fukada, and K Takahashi, and J M Sturtevant
February 1992, Biochemistry,
H Fukada, and K Takahashi, and J M Sturtevant
December 1998, Protein engineering,
H Fukada, and K Takahashi, and J M Sturtevant
July 2004, Biophysical chemistry,
Copied contents to your clipboard!