Human leukemic B cell activation: functional consequence of membrane IgM interaction with anti-IgM ligand is an alterable cell characteristic. 1987

P Mongini, and C Blessinger, and S Seremetis, and R Winchester, and S Rudich
Department of Rheumatic Diseases, Hospital for Joint Diseases, New York University School of Medicine, NY 10003.

A functional study of several human malignant B cell populations has indicated that occasional leukemic clones are extraordinarily sensitive to signal transduction through membrane IgM. One isolated hairy cell leukemia (HCL) with low background DNA synthesis was stimulated to significant levels of DNA synthesis when cultured with high (100 micrograms/mL) concentrations of soluble anti-IgM ligands. In contrast to the activation of normal peripheral blood polyclonal B cells, this DNA synthesis was completely independent of accessory T cell factors. Although the HCL clone could also be induced to enter S phase by incubation in media supplemented with only activated T cell supernatant, culture of the clone with activated T cell supernatant plus anti-IgM Ab resulted in DNA synthesis that was significantly less than that induced by either activator alone. Factor(s) in T cell supernatant appear to modulate the leukemic clone so that the binding of ligand to membrane IgM is perceived as an inhibitory rather than a stimulatory signal for DNA synthesis. In terms of Ig Fc independence and low ligand dose requirements, anti-IgM-mediated inhibitory signal transduction in the T cell supernatant-activated HCL clone was found to mimic anti-IgM mediated suppression of the spontaneous DNA synthesis of an alternative HCL clone. The functional results suggest that the type of signal transduced anti-Ig ligands may reflect differences in the activation state of receptive leukemic B cells.

UI MeSH Term Description Entries
D007075 Immunoglobulin M A class of immunoglobulin bearing mu chains (IMMUNOGLOBULIN MU-CHAINS). IgM can fix COMPLEMENT. The name comes from its high molecular weight and originally was called a macroglobulin. Gamma Globulin, 19S,IgM,IgM Antibody,IgM1,IgM2,19S Gamma Globulin,Antibody, IgM
D007938 Leukemia A progressive, malignant disease of the blood-forming organs, characterized by distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemias were originally termed acute or chronic based on life expectancy but now are classified according to cellular maturity. Acute leukemias consist of predominately immature cells; chronic leukemias are composed of more mature cells. (From The Merck Manual, 2006) Leucocythaemia,Leucocythemia,Leucocythaemias,Leucocythemias,Leukemias
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D011947 Receptors, Antigen, B-Cell IMMUNOGLOBULINS on the surface of B-LYMPHOCYTES. Their MESSENGER RNA contains an EXON with a membrane spanning sequence, producing immunoglobulins in the form of type I transmembrane proteins as opposed to secreted immunoglobulins (ANTIBODIES) which do not contain the membrane spanning segment. Antigen Receptors, B-Cell,B-Cell Antigen Receptor,B-Cell Antigen Receptors,Surface Immunoglobulin,Immunoglobulins, Membrane-Bound,Immunoglobulins, Surface,Membrane Bound Immunoglobulin,Membrane-Bound Immunoglobulins,Receptors, Antigen, B Cell,Surface Immunoglobulins,Antigen Receptor, B-Cell,Antigen Receptors, B Cell,B Cell Antigen Receptor,B Cell Antigen Receptors,Bound Immunoglobulin, Membrane,Immunoglobulin, Membrane Bound,Immunoglobulin, Surface,Immunoglobulins, Membrane Bound,Membrane Bound Immunoglobulins,Receptor, B-Cell Antigen,Receptors, B-Cell Antigen
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000888 Antibodies, Anti-Idiotypic Antibodies which react with the individual structural determinants (idiotopes) on the variable region of other antibodies. Anti-Antibodies,Anti-Idiotype Antibodies,Antibodies, Internal Image,Antigamma Globulin Antibodies,Antiglobulins,Anti Antibodies,Anti-gamma Globulin Antibodies,Anti Idiotype Antibodies,Anti gamma Globulin Antibodies,Anti-Idiotypic Antibodies,Antibodies, Anti,Antibodies, Anti Idiotypic,Antibodies, Anti-Idiotype,Antibodies, Anti-gamma Globulin,Antibodies, Antigamma Globulin,Globulin Antibodies, Anti-gamma,Globulin Antibodies, Antigamma,Image Antibodies, Internal,Internal Image Antibodies

Related Publications

P Mongini, and C Blessinger, and S Seremetis, and R Winchester, and S Rudich
April 1995, Journal of immunology (Baltimore, Md. : 1950),
P Mongini, and C Blessinger, and S Seremetis, and R Winchester, and S Rudich
May 1979, Biochemistry,
P Mongini, and C Blessinger, and S Seremetis, and R Winchester, and S Rudich
July 1988, The Journal of experimental medicine,
P Mongini, and C Blessinger, and S Seremetis, and R Winchester, and S Rudich
July 1990, Journal of immunological methods,
P Mongini, and C Blessinger, and S Seremetis, and R Winchester, and S Rudich
June 1989, Journal of immunology (Baltimore, Md. : 1950),
P Mongini, and C Blessinger, and S Seremetis, and R Winchester, and S Rudich
March 1980, Tissue antigens,
P Mongini, and C Blessinger, and S Seremetis, and R Winchester, and S Rudich
January 2023, Frontiers in immunology,
P Mongini, and C Blessinger, and S Seremetis, and R Winchester, and S Rudich
October 1985, The Journal of experimental medicine,
P Mongini, and C Blessinger, and S Seremetis, and R Winchester, and S Rudich
April 1995, Biochemical and biophysical research communications,
P Mongini, and C Blessinger, and S Seremetis, and R Winchester, and S Rudich
August 1990, European journal of immunology,
Copied contents to your clipboard!