Voltage-clamp of cut-end skeletal muscle fibre: a diffusion experiment. 1987

C Pater, and M P Sauviat
Laboratoire de Biomembranes et des Ensembles neuronaux (U.A. CNRS no 1121), Université de Parix XI, Orsay, France.

Membrane potential and current were studied in cut end fibres of frog skeletal muscle under current and voltage clamp conditions, by the double sucrose gap technique. Similar action potentials were recorded under current clamp conditions with either the microelectrode or the double sucrose gap techniques. Under voltage clamp conditions, the control of the membrane potential was maintained adequately. The early current was sensitive to both TTX and external Na concentration suggesting that the current was carried by Na ions. Sodium current (INa) was subsequently analysed using the Hodgkin-Huxley formulae. INa half-activation and inactivation occurred at -34 mV and -60 mV, respectively. Na-rich solution applied internally by diffusion through cut ends produced a reduction of INa associated with a shift of the sodium current reversal potential (VNa) towards more negative membrane potentials. This suggested that the sodium electromotive force was reduced by the increase in internal Na content of the fibre. Iodate applied externally changed neither the activation nor the inactivation time courses of INa, but reduced the peak current. Conversely, internally applied by diffusion from the cut end of skeletal muscle fibre, iodate slowed down the time course of INa inactivation and decreased the current peak. In conclusion, the double sucrose gap technique adapted to cut end frog skeletal muscle fibre allows a satisfactory analysis of INa.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011893 Rana esculenta An edible species of the family Ranidae, occurring in Europe and used extensively in biomedical research. Commonly referred to as "edible frog". Pelophylax esculentus
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

C Pater, and M P Sauviat
April 1978, The Journal of physiology,
C Pater, and M P Sauviat
October 1966, The Journal of physiology,
C Pater, and M P Sauviat
August 1977, The Journal of physiology,
C Pater, and M P Sauviat
January 1998, Methods in enzymology,
C Pater, and M P Sauviat
January 2007, Methods in molecular biology (Clifton, N.J.),
C Pater, and M P Sauviat
January 2014, Methods in molecular biology (Clifton, N.J.),
C Pater, and M P Sauviat
April 1968, Nature,
C Pater, and M P Sauviat
April 1979, The Journal of physiology,
C Pater, and M P Sauviat
March 1976, The Journal of general physiology,
Copied contents to your clipboard!