Membrane fatty acid composition and radiation response of Bp8 sarcoma ascites tumour cells. 1987

M Harms-Ringdahl, and S Skog, and B Tribukait
Department of Radiobiology, University of Stockholm, Sweden.

The radiation response of Bp8 sarcoma ascites tumour cells with differences in membrane fatty acid composition was studied. The cells were grown i.p. in NMRI mice and their membrane composition was changed in response to different dietary regimes provided to the host animals. Three diets that differed only with regard to the source of fatty acids, i.e. sunflower seed oil, coconut oil, hydrogenated lard and a fourth commercially available standard laboratory diet, were given to the mice for different lengths of time, before implantation of the tumour cells. The time course for the dietary regimes to induce different levels of changes in membrane fatty acid composition of the ascites cells was established. The evaluation of the radiosensitivity of cells with different membrane fatty acid composition was done in vitro. Cell survival, expressed by D0, varied only insignificantly between the four dietary groups, while their repair capacity (Dq and n) differed significantly. Increased repair capacity was observed for ascites cells grown in animals on diets enriched in sunflower seed oil and coconut oil, compared with cells from mice fed the hydrogenated lard diet or from cells from the control animals. The membrane fatty acid composition of the cells from the two dietary groups with increased levels of repair capacity differed extensively, and in general there was no correlation observed between radiation response and the membrane fatty acid composition of the four dietary groups studied. For two of the dietary groups, coconut oil and control, with marked differences in membrane fatty acid composition, the effects of irradiation on ascites tumour growth rate and cell cycle distribution were followed in vivo. For none of these parameters was an effect of membrane fatty acid composition on radiation response observed.

UI MeSH Term Description Entries
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004041 Dietary Fats Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados. Fats, Dietary,Dietary Fat,Fat, Dietary
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012513 Sarcoma, Experimental Experimentally induced neoplasms of CONNECTIVE TISSUE in animals to provide a model for studying human SARCOMA. EHS Tumor,Sarcoma, Engelbreth-Holm-Swarm,Sarcoma, Jensen,Experimental Sarcoma,Experimental Sarcomas,Sarcomas, Experimental,Engelbreth-Holm-Swarm Sarcoma,Jensen Sarcoma,Sarcoma, Engelbreth Holm Swarm,Tumor, EHS
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

M Harms-Ringdahl, and S Skog, and B Tribukait
October 1967, Nature,
M Harms-Ringdahl, and S Skog, and B Tribukait
January 1965, The Biochemical journal,
M Harms-Ringdahl, and S Skog, and B Tribukait
January 1968, Acta pathologica et microbiologica Scandinavica,
M Harms-Ringdahl, and S Skog, and B Tribukait
January 1982, Acta radiologica. Oncology,
M Harms-Ringdahl, and S Skog, and B Tribukait
December 1969, British journal of experimental pathology,
M Harms-Ringdahl, and S Skog, and B Tribukait
January 1982, Acta radiologica. Oncology,
M Harms-Ringdahl, and S Skog, and B Tribukait
October 1973, British journal of experimental pathology,
M Harms-Ringdahl, and S Skog, and B Tribukait
April 1954, The British journal of radiology,
Copied contents to your clipboard!