Lymphoma models for B cell activation and tolerance. VI. Reversal of anti-Ig-mediated negative signaling by T cell-derived lymphokines. 1987

D W Scott, and A O'Garra, and D Warren, and G G Klaus
Division of Immunology, National Institute for Medical Research, London, England.

We have recently described three "immature" B cell lymphomas which are exquisitely sensitive to growth inhibition by anti-Ig reagents and may serve as models for tolerance induction in normal B cells. These cells are inhibited from cell cycle progression into S after receiving a negative signal in early G1. In this paper, we demonstrate that the growth inhibition by anti-Ig can be prevented and reversed by the addition of supernatants from T cell lines. One such line, called Tova, produces factors which restore normal levels of DNA synthesis in the presence of concentrations of anti-Fab or anti-kappa immunoglobulins which cause up to a 90% inhibition of thymidine incorporation in a 2- to 3-day culture period. This factor is at least partially effective when added up to 24 hr after anti-Ig to unsynchronized lymphoma cells and it does not alter the growth of control cultures. Studies using synchronized lymphoma cells indicated that the T cell factor permitted cycle progression into S when added during the early G1 exposure to anti-kappa and was less effective when added late in G1. Preliminary characterization suggests that both B cell growth factor II (interleukin 5) and B cell stimulatory factor 1 (interleukin 4) have additive activity in this system, although another unidentified lymphokine may also be involved. The relevance of T cell reversal of Ig receptor-mediated negative signaling to neonatal B cell tolerance is emphasized.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008222 Lymphokines Soluble protein factors generated by activated lymphocytes that affect other cells, primarily those involved in cellular immunity. Lymphocyte Mediators,Mediators, Lymphocyte
D008223 Lymphoma A general term for various neoplastic diseases of the lymphoid tissue. Germinoblastoma,Lymphoma, Malignant,Reticulolymphosarcoma,Sarcoma, Germinoblastic,Germinoblastic Sarcoma,Germinoblastic Sarcomas,Germinoblastomas,Lymphomas,Lymphomas, Malignant,Malignant Lymphoma,Malignant Lymphomas,Reticulolymphosarcomas,Sarcomas, Germinoblastic
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011947 Receptors, Antigen, B-Cell IMMUNOGLOBULINS on the surface of B-LYMPHOCYTES. Their MESSENGER RNA contains an EXON with a membrane spanning sequence, producing immunoglobulins in the form of type I transmembrane proteins as opposed to secreted immunoglobulins (ANTIBODIES) which do not contain the membrane spanning segment. Antigen Receptors, B-Cell,B-Cell Antigen Receptor,B-Cell Antigen Receptors,Surface Immunoglobulin,Immunoglobulins, Membrane-Bound,Immunoglobulins, Surface,Membrane Bound Immunoglobulin,Membrane-Bound Immunoglobulins,Receptors, Antigen, B Cell,Surface Immunoglobulins,Antigen Receptor, B-Cell,Antigen Receptors, B Cell,B Cell Antigen Receptor,B Cell Antigen Receptors,Bound Immunoglobulin, Membrane,Immunoglobulin, Membrane Bound,Immunoglobulin, Surface,Immunoglobulins, Membrane Bound,Membrane Bound Immunoglobulins,Receptor, B-Cell Antigen,Receptors, B-Cell Antigen
D011961 Receptors, Fc Molecules found on the surface of some, but not all, B-lymphocytes, T-lymphocytes, and macrophages, which recognize and combine with the Fc (crystallizable) portion of immunoglobulin molecules. Fc Receptors,Fc Receptor,Receptor, Fc
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D W Scott, and A O'Garra, and D Warren, and G G Klaus
August 1988, Cellular immunology,
D W Scott, and A O'Garra, and D Warren, and G G Klaus
December 1986, European journal of immunology,
D W Scott, and A O'Garra, and D Warren, and G G Klaus
July 1986, The Journal of experimental medicine,
D W Scott, and A O'Garra, and D Warren, and G G Klaus
August 1989, Journal of immunology (Baltimore, Md. : 1950),
D W Scott, and A O'Garra, and D Warren, and G G Klaus
January 1990, Research in immunology,
D W Scott, and A O'Garra, and D Warren, and G G Klaus
October 1990, Journal of immunology (Baltimore, Md. : 1950),
D W Scott, and A O'Garra, and D Warren, and G G Klaus
March 1985, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!