Infection of the Asian gray shrew Crocidura attenuata (Insectivora: Soricidae) with Sarcocystis attenuati n. sp. (Apicomplexa: Sarcocystidae) in China. 2022

Junjie Hu, and Jun Sun, and Yanmei Guo, and Hongxia Zeng, and Yunzhi Zhang, and Jianping Tao
School of Ecology and Environmental Sciences and Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, China. jjhu@ynu.edu.cn.

BACKGROUND Data on the genus Sarcocystis in insectivores are limited. The Asian gray shrew Crocidura attenuata is one of the most common species of the insectivore family Soricidae in South Asia and Southeast Asia. To our knowledge, species of Sarcocystis have never been recorded previously in this host. METHODS Tissues were obtained from 42 Asian gray shrews caught in 2017 and 2018 in China. Sarcocysts were observed using light microscopy (LM) and transmission electron microscopy (TEM). To describe the parasite life cycle, muscle tissues of the host infected with sarcocysts were force-fed to two beauty rat snakes Elaphe taeniura. Individual sarcocysts from different Asian gray shrews, and oocysts/sporocysts isolated from the small intestines and feces of the experimental snakes, were selected for DNA extraction, and seven genetic markers, namely, two nuclear loci [18S ribosomal DNA (18S rDNA) and internal transcribed spacer region 1 (ITS1)], three mitochondrial genes [cytochrome oxidase subunit 1 (cox1), cox3 and cytochrome b], and two apicoplast genes (RNA polymerase beta subunit and caseinolytic protease C), were amplified, sequenced and analyzed. RESULTS Sarcocysts were found in 17 of the 42 (40.5%) Asian gray shrews. Under LM, the microscopic sarcocysts showed saw- or tooth-like protrusions measuring 3.3-4.5 μm. Ultrastructurally, the sarcocyst wall contained numerous lancet- or leaf-like villous protrusions, similar to those described for type 9h of the common cyst wall classification. The experimental beauty rat snakes shed oocysts/sporocysts measuring 11.9-16.7 × 9.2-10.6 μm with a prepatent period of 10-11 days. Comparison of the newly obtained sequences with those previously deposited in GenBank revealed that those of 18S rDNA and cox1 were most similar to those of Sarcocystis scandentiborneensis recorded in the tree shrews Tupaia minor and Tupaia tana (i.e., 97.6-98.3% and 100% identity, respectively). Phylogenetic analysis based on 18S rDNA or ITS1 sequences placed this parasite close to Sarcocystis spp. that utilize small animals as intermediate hosts and snakes as the known or presumed definitive host. On the basis of morphological and molecular characteristics and host specificity, the parasite was proposed as a new species, named Sarcocystis attenuati. CONCLUSIONS Sarcocysts were recorded in Asian gray shrews, to our knowledge for the first time. Based on morphological and molecular characterization, a new species of parasite is proposed: Sarcocystis attenuati. According to the LM and TEM results, S. attenuati sarcocysts are distinct from those of Sarcocystis spp. in other insectivores and those of S. scandentiborneensis in tree shrews. The 18S rDNA or cox1 sequences of Sarcocystis attenuati shared high similarity with those of Sarcocystis scandentiborneensis, Sarcocystis zuoi, Sarcocystis cf. zuoi in the Malayan field rat, and Sarcocystis sp. in the greater white-toothed shrew. Therefore, we suggest that more research on the relationships of these closely related taxa should be undertaken in the future.

UI MeSH Term Description Entries
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D002681 China A country spanning from central Asia to the Pacific Ocean. Inner Mongolia,Manchuria,People's Republic of China,Sinkiang,Mainland China
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012337 RNA, Ribosomal, 18S Constituent of the 40S subunit of eukaryotic ribosomes. 18S rRNA is involved in the initiation of polypeptide synthesis in eukaryotes. 18S Ribosomal RNA,18S RRNA,RNA, 18S Ribosomal,Ribosomal RNA, 18S
D012522 Sarcocystis A genus of protozoa found in reptiles, birds, and mammals, including humans. This heteroxenous parasite produces muscle cysts in intermediate hosts such as domestic herbivores (cattle, sheep, pigs) and rodents. Final hosts are predators such as dogs, cats, and man. Sarcosporidia,Sarcocysti,Sarcosporidias
D012523 Sarcocystosis Infection of the striated muscle of mammals by parasites of the genus SARCOCYSTIS. Disease symptoms such as vomiting, diarrhea, muscle weakness, and paralysis are produced by sarcocystin, a toxin produced by the organism. Sarcosporidiosis,Sarcocystoses,Sarcosporidioses
D012788 Shrews Small mammals in the family Soricidae, order Soricomorpha (formerly Insectivora). They resemble moles and are characterized by a mobile snout, sharp INCISOR teeth, and are found in tropical and temperate regions worldwide. Shrew
D016054 DNA, Protozoan Deoxyribonucleic acid that makes up the genetic material of protozoa. Protozoan DNA
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

Junjie Hu, and Jun Sun, and Yanmei Guo, and Hongxia Zeng, and Yunzhi Zhang, and Jianping Tao
November 2016, Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis,
Junjie Hu, and Jun Sun, and Yanmei Guo, and Hongxia Zeng, and Yunzhi Zhang, and Jianping Tao
August 2017, Parasitology research,
Junjie Hu, and Jun Sun, and Yanmei Guo, and Hongxia Zeng, and Yunzhi Zhang, and Jianping Tao
April 1989, The Journal of parasitology,
Junjie Hu, and Jun Sun, and Yanmei Guo, and Hongxia Zeng, and Yunzhi Zhang, and Jianping Tao
March 2017, Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis,
Junjie Hu, and Jun Sun, and Yanmei Guo, and Hongxia Zeng, and Yunzhi Zhang, and Jianping Tao
November 2015, Parasitology research,
Junjie Hu, and Jun Sun, and Yanmei Guo, and Hongxia Zeng, and Yunzhi Zhang, and Jianping Tao
February 2023, Parasites & vectors,
Junjie Hu, and Jun Sun, and Yanmei Guo, and Hongxia Zeng, and Yunzhi Zhang, and Jianping Tao
August 1991, The Journal of parasitology,
Junjie Hu, and Jun Sun, and Yanmei Guo, and Hongxia Zeng, and Yunzhi Zhang, and Jianping Tao
January 2016, The Journal of eukaryotic microbiology,
Junjie Hu, and Jun Sun, and Yanmei Guo, and Hongxia Zeng, and Yunzhi Zhang, and Jianping Tao
August 1990, The Journal of parasitology,
Junjie Hu, and Jun Sun, and Yanmei Guo, and Hongxia Zeng, and Yunzhi Zhang, and Jianping Tao
December 2015, Parasitology research,
Copied contents to your clipboard!