AtUSP17 negatively regulates salt stress tolerance through modulation of multiple signaling pathways in Arabidopsis. 2022

Monika Bhuria, and Parul Goel, and Sanjay Kumar, and Anil Kumar Singh
Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.

AtUSP17 is a multiple stress-inducible gene that encodes a universal stress protein (USP) in Arabidopsis thaliana. In the present study, we functionally characterized AtUSP17 using its knock-down mutant, Atusp17, and AtUSP17-overexpression lines (WTOE). The overexpression of AtUSP17 in wild-type and Atusp17 mutant Arabidopsis plants resulted in higher sensitivity to salt stress during seed germination than WT and Atusp17 mutant lines. In addition, the WTOE and FC lines exhibited higher abscisic acid (ABA) sensitivity than Atusp17 mutant during germination. The exogenous application of ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) was able to rescue the salt hypersensitive phenotype of WTOE lines. In contrast, AgNO3 , an ethylene action inhibitor, further blocked the effect of ACC during germination. The addition of ACC under salt stress resulted in reduced reactive oxygen species (ROS) accumulation, expression of ABA-responsive genes, improved proline synthesis, increased expression of positive regulators of ethylene signaling and antioxidant defense genes with enhanced antioxidant enzyme activities. The WTOE lines exhibited salt sensitivity even at the adult plant stage, while Atusp17 mutant exhibited higher salt tolerance with higher chlorophyll, relative water content and lower electrolyte leakage as compared with WT. The BAR interaction viewer database and available literature mining identified AtUSP17-interacting proteins, which include RGS1, RACK1C and PRN1 involved in G-protein signaling, which play a crucial role in salt stress responses. Based on the present study and available literature, we proposed a model in which AtUSP17 negatively mediates salt tolerance in Arabidopsis through modulation of ethylene, ABA, ROS, and G-protein signaling and responses.

UI MeSH Term Description Entries
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D000040 Abscisic Acid Abscission-accelerating plant growth substance isolated from young cotton fruit, leaves of sycamore, birch, and other plants, and from potatoes, lemons, avocados, and other fruits. 2,4-Pentadienoic acid, 5-(1-hydroxy-2,6,6-trimethyl-4-oxo-2-cyclohexen-1-yl)-3-methyl-, (S-(Z,E))-,Abscisic Acid Monoammonium Salt, (R)-Isomer,Abscisic Acid, (+,-)-Isomer,Abscisic Acid, (E,E)-(+-)-Isomer,Abscisic Acid, (E,Z)-(+,-)-Isomer,Abscisic Acid, (R)-Isomer,Abscisic Acid, (Z,E)-Isomer,Abscissic Acid,Abscissins
D000077323 Salt Stress The condition that results from ion toxicity due to ion imbalances (e.g., excessive Na+ and deficiency in Mg++). Salinity Stress,Salinity Stress Reaction,Salinity Stress Reponse,Salt Stress Reaction,Salt Stress Response,Reaction, Salinity Stress,Reaction, Salt Stress,Reponse, Salinity Stress,Response, Salt Stress,Salinity Stress Reactions,Salinity Stress Reponses,Salinity Stresses,Salt Stress Reactions,Salt Stress Responses,Salt Stresses,Stress Reaction, Salinity,Stress Reaction, Salt,Stress Reponse, Salinity,Stress Response, Salt,Stress, Salinity,Stress, Salt
D013312 Stress, Physiological The unfavorable effect of environmental factors (stressors) on the physiological functions of an organism. Prolonged unresolved physiological stress can affect HOMEOSTASIS of the organism, and may lead to damaging or pathological conditions. Biotic Stress,Metabolic Stress,Physiological Stress,Abiotic Stress,Abiotic Stress Reaction,Abiotic Stress Response,Biological Stress,Metabolic Stress Response,Physiological Stress Reaction,Physiological Stress Reactivity,Physiological Stress Response,Abiotic Stress Reactions,Abiotic Stress Responses,Abiotic Stresses,Biological Stresses,Biotic Stresses,Metabolic Stress Responses,Metabolic Stresses,Physiological Stress Reactions,Physiological Stress Responses,Physiological Stresses,Reaction, Abiotic Stress,Reactions, Abiotic Stress,Response, Abiotic Stress,Response, Metabolic Stress,Stress Reaction, Physiological,Stress Response, Metabolic,Stress Response, Physiological,Stress, Abiotic,Stress, Biological,Stress, Biotic,Stress, Metabolic
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017360 Arabidopsis A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development. Arabidopsis thaliana,Cress, Mouse-ear,A. thaliana,A. thalianas,Arabidopses,Arabidopsis thalianas,Cress, Mouse ear,Cresses, Mouse-ear,Mouse-ear Cress,Mouse-ear Cresses,thaliana, A.,thaliana, Arabidopsis,thalianas, A.
D055049 Salt Tolerance The ability of organisms to sense and adapt to high concentrations of salt in their growth environment. Salt-Tolerance,Saline-Tolerance,Salinity Tolerance,Salt Adaptation,Salt Adaption,Salt-Adaption,Adaptation, Salt,Adaption, Salt,Saline Tolerance,Salinity Tolerances,Salt Adaptations,Salt Adaptions,Salt Tolerances,Tolerance, Salinity,Tolerance, Salt
D018506 Gene Expression Regulation, Plant Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in plants. Plant Gene Expression Regulation,Regulation of Gene Expression, Plant,Regulation, Gene Expression, Plant
D018525 Germination The initial stages of the growth of SEEDS into a SEEDLINGS. The embryonic shoot (plumule) and embryonic PLANT ROOTS (radicle) emerge and grow upwards and downwards respectively. Food reserves for germination come from endosperm tissue within the seed and/or from the seed leaves (COTYLEDON). (Concise Dictionary of Biology, 1990) Germinations

Related Publications

Monika Bhuria, and Parul Goel, and Sanjay Kumar, and Anil Kumar Singh
March 2019, Plant molecular biology,
Monika Bhuria, and Parul Goel, and Sanjay Kumar, and Anil Kumar Singh
August 2023, Plants (Basel, Switzerland),
Monika Bhuria, and Parul Goel, and Sanjay Kumar, and Anil Kumar Singh
March 2021, Journal of integrative plant biology,
Monika Bhuria, and Parul Goel, and Sanjay Kumar, and Anil Kumar Singh
August 2022, Journal of genetics and genomics = Yi chuan xue bao,
Monika Bhuria, and Parul Goel, and Sanjay Kumar, and Anil Kumar Singh
March 2020, Plant signaling & behavior,
Monika Bhuria, and Parul Goel, and Sanjay Kumar, and Anil Kumar Singh
August 2015, Journal of experimental botany,
Monika Bhuria, and Parul Goel, and Sanjay Kumar, and Anil Kumar Singh
December 2017, Planta,
Monika Bhuria, and Parul Goel, and Sanjay Kumar, and Anil Kumar Singh
August 2015, Plant cell reports,
Monika Bhuria, and Parul Goel, and Sanjay Kumar, and Anil Kumar Singh
May 2020, Molecular biology reports,
Copied contents to your clipboard!