High performance liquid chromatographic analysis of insulin degradation by rat skeletal muscle insulin protease. 1986

F G Hamel, and D E Peavy, and M P Ryan, and W C Duckworth

The degradation of [125I]iodoinsulin (A14) by insulin protease (EC 3.4.22.11) was studied using HPLC. A reverse phase HPLC method is presented which allows the separation and quantitation of insulin degradation products. After incubation of [125I]iodoinsulin (A14) with insulin protease, there was an initial rapid loss of radioactivity from the [125I] iodoinsulin (A14) peak, which was quantitatively accounted for by the appearance of radioactivity in 11 different peaks, but was not accompanied by a proportional increase in the solubility of the sample in trichloroacetic acid. Two of the peaks showed appreciable accumulation before the others, and all but the first-eluted peak plateaued by 20 min. After 20 min of incubation, the amount of radioactivity present as the first-eluted peak, solubility in trichloroacetic acid, and insulin loss continued to increase at a steady, but slowed, rate. The order of appearance suggests that insulin protease acts on insulin in an ordered sequence of steps to generate a number of intermediates that are precipitable by trichloroacetic acid, but are subsequently degraded to material that is soluble in trichloroacetic acid. Sulfitolysis of 5 major peaks and subsequent HPLC analysis of the fragments showed none of the peaks to possess intact A chains. Peptide sequencing of 2 of the peaks indicates that the A-chain is cleaved in at least 2 positions, one beyond the 14th position, and one between the 13th and 14th amino acids (leucine and tyrosine).

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007339 Insulysin An enzyme the catalyzes the degradation of insulin, glucagon and other polypeptides. It is inhibited by bacitracin, chelating agents EDTA and 1,10-phenanthroline, and by thiol-blocking reagents such as N-ethylmaleimide, but not phosphoramidon. (Eur J Biochem 1994;223:1-5) EC 3.4.24.56. Insulinase,Insulin Protease,Insulin Proteinase,Insulin-Degrading Enzyme,Enzyme, Insulin-Degrading,Insulin Degrading Enzyme,Protease, Insulin,Proteinase, Insulin
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012995 Solubility The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Solubilities
D014238 Trichloroacetic Acid A strong acid used as a protein precipitant in clinical chemistry and also as a caustic for removing warts. Acide trichloracetique,Rubidium Trichloroacetate,Sodium Trichloroacetate,Acid, Trichloroacetic,Trichloroacetate, Rubidium,Trichloroacetate, Sodium,trichloracetique, Acide

Related Publications

F G Hamel, and D E Peavy, and M P Ryan, and W C Duckworth
December 1990, Journal of chromatography,
F G Hamel, and D E Peavy, and M P Ryan, and W C Duckworth
April 1988, Journal of endocrinological investigation,
F G Hamel, and D E Peavy, and M P Ryan, and W C Duckworth
December 1988, Endocrinology,
F G Hamel, and D E Peavy, and M P Ryan, and W C Duckworth
July 1981, Journal of pharmaceutical sciences,
F G Hamel, and D E Peavy, and M P Ryan, and W C Duckworth
October 1985, Endocrinology,
F G Hamel, and D E Peavy, and M P Ryan, and W C Duckworth
August 1991, The Journal of veterinary medical science,
F G Hamel, and D E Peavy, and M P Ryan, and W C Duckworth
June 1998, Analytical biochemistry,
F G Hamel, and D E Peavy, and M P Ryan, and W C Duckworth
February 1973, Biochimica et biophysica acta,
F G Hamel, and D E Peavy, and M P Ryan, and W C Duckworth
March 1987, Journal of chromatography,
F G Hamel, and D E Peavy, and M P Ryan, and W C Duckworth
November 1982, Biochimica et biophysica acta,
Copied contents to your clipboard!