RecBC enzyme activity is required for far-UV induced respiration shutoff in Escherichia coli K12. 1986

P A Swenson, and I L Norton

Shutoff of respiration is one of a number of recA+ lexA+ dependent (SOS) responses caused by far ultraviolet (245 nm) radiation (UV) damage of DNA in Escherichia coli cells. Thus far no rec/lex response has been shown to require the recB recC gene product, the RecBC enzyme. We report in this paper that UV-induced respiration shutoff did not occur in either of these radiation-sensitive derivatives of K12 strain AB1157 nor in the recB recC double mutant. The sbcB gene product is exonuclease I and it has been reported that the triple mutant strain recB recC sbcB has near normal recombination efficiency and resistance to UV. The sbcB strain shut off its respiration after UV but the triple mutant did not show UV-induced respiration shutoff; the shutoff and death responses were uncoupled. We concluded that respiration shutoff requires RecBC enzyme activity. The RecBC enzyme has ATP-dependent double-strand exonuclease activity, helicase activity and several other activities. We tested a recBC+ (double dagger) mutant strain (recC 1010) that had normal recombination efficiency and resistance to UV but which possessed no ATP-dependent double-strand exonuclease activity. This strain did not shut off its respiration. The presence or absence of other RecBC enzyme activities in this mutant is not known. These results support the hypothesis that ATP-dependent double-strand exonuclease activity is necessary for UV-induced respiration shutoff.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009391 Nephelometry and Turbidimetry Chemical analysis based on the phenomenon whereby light, passing through a medium with dispersed particles of a different refractive index from that of the medium, is attenuated in intensity by scattering. In turbidimetry, the intensity of light transmitted through the medium, the unscattered light, is measured. In nephelometry, the intensity of the scattered light is measured, usually, but not necessarily, at right angles to the incident light beam. Turbidimetry,Nephelometry,Turbidimetry and Nephelometry
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011092 Polyethylene Glycols Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS. Macrogols,Polyoxyethylenes,Carbowax,Macrogol,Polyethylene Glycol,Polyethylene Oxide,Polyethyleneoxide,Polyglycol,Glycol, Polyethylene,Glycols, Polyethylene,Oxide, Polyethylene,Oxides, Polyethylene,Polyethylene Oxides,Polyethyleneoxides,Polyglycols,Polyoxyethylene
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005090 Exodeoxyribonucleases A family of enzymes that catalyze the exonucleolytic cleavage of DNA. It includes members of the class EC 3.1.11 that produce 5'-phosphomonoesters as cleavage products. DNA Exonucleases,Exonucleases, DNA
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray
D043211 Exodeoxyribonuclease V An ATP-dependent exodeoxyribonuclease that cleaves in either the 5'- to 3'- or the 3'- to 5'-direction to yield 5'-phosphooligonucleotides. It is primarily found in BACTERIA. ATP-Dependent DNase,Exodeoxyribonuclease V, alpha Chain,Exodeoxyribonuclease V, beta Chain,Exodeoxyribonuclease V, gamma Chain,Exonuclease V,RecBC DNase,RecBC Deoxyribonuclease,RecBCD Enzyme,ATP Dependent DNase,Deoxyribonuclease, RecBC
D029968 Escherichia coli Proteins Proteins obtained from ESCHERICHIA COLI. E coli Proteins

Related Publications

P A Swenson, and I L Norton
January 1985, Molecular & general genetics : MGG,
P A Swenson, and I L Norton
January 1994, Annual review of genetics,
P A Swenson, and I L Norton
September 1985, Proceedings of the National Academy of Sciences of the United States of America,
P A Swenson, and I L Norton
December 1984, Proceedings of the National Academy of Sciences of the United States of America,
P A Swenson, and I L Norton
September 1985, Journal of molecular biology,
P A Swenson, and I L Norton
January 1983, Molecular & general genetics : MGG,
P A Swenson, and I L Norton
October 1988, Molecular & general genetics : MGG,
P A Swenson, and I L Norton
November 1984, Journal of bacteriology,
Copied contents to your clipboard!