Identification of new cell division genes in Escherichia coli by using extragenic suppressors. 1986

G Noël, and G R Drapeau

To facilitate the analysis of the cell division control apparatus in Escherichia coli, we studied extragenic suppressor mutations of a previously characterized temperature-sensitive division mutation, ftsM1. Cells of strain GD40 which harbor this mutation were spread on agar plates and incubated at 42 degrees C, and the surviving cells were analyzed for the presence of a suppressor mutation. One group of suppressed mutants had acquired a new mutation which, by conjugation, was found to be located in the 30- to 40-min region of the E. coli genetic map. The other group comprised revertants carrying a suppressor which appeared to map between thr and leu. This suppressor gene, called sftA, was cloned with a mini-Mu-derived in vivo cloning system by selection for suppression of temperature sensitivity in GD40 cells. Subsequent subcloning of a fragment of the chromosomal DNA from the mini-Mu plasmid into pBR325 resulted in the delineation of the suppressor gene on a 1.8-kilobase XhoI-PvuI fragment. A strain, CV514, which does not express the temperature sensitivity phenotype of the ftsM1 mutation, was found to harbor a natural suppressor of this mutation. UV sensitivity, another known phenotype of the ftsM1 mutation, was also corrected by the presence of the sftA suppressor in the cell. Thus, the characterization of extragenic suppressors may allow the identification of new genes involved in the control of cell division.

UI MeSH Term Description Entries
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D013489 Suppression, Genetic Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE). Suppressor Mutation,Genetic Suppression,Genetic Suppressions,Mutation, Suppressor,Mutations, Suppressor,Suppressions, Genetic,Suppressor Mutations

Related Publications

G Noël, and G R Drapeau
January 1984, Molecular & general genetics : MGG,
G Noël, and G R Drapeau
October 1989, Molecular microbiology,
G Noël, and G R Drapeau
August 1979, Journal of molecular biology,
G Noël, and G R Drapeau
October 1986, Molecular & general genetics : MGG,
G Noël, and G R Drapeau
March 1999, Journal of bacteriology,
G Noël, and G R Drapeau
October 1993, Current opinion in genetics & development,
G Noël, and G R Drapeau
November 1995, Journal of bacteriology,
Copied contents to your clipboard!