Persistence of regional left ventricular dysfunction after exercise-induced myocardial ischemia. 1986

D C Homans, and E Sublett, and X Z Dai, and R J Bache

To determine whether regional myocardial dysfunction occurring after exercise-induced ischemic might be caused by continued abnormalities of myocardial blood flow in the post-exercise period, nine dogs were instrumented with ultrasonic microcrystals for determination of circumferential segment shortening, circumflex artery electromagnetic flow probes, and hydraulic coronary artery occluders. Dogs performed treadmill exercise during partial inflation of the coronary artery occluder. When the stenosis was maintained after exercise (persistent stenosis), subendocardial flow = 0.79 +/- 0.42 ml/min per g vs. 1.39 +/- 0.43 ml/min per g control), and this was associated with continued dysfunction in the ischemic zone (segment shortening 45.4 +/- 36.9% of resting control). When the stenosis was released immediately after exercise (temporary stenosis), however, flow was markedly increased 1 min post-exercise (mean transmural flow 4.24 +/- 1.22 ml/min per g; subendocardial flow 4.18 +/- 1.52 ml/min per g), and this was associated with a transient increase in segment shortening to 104.5 +/- 9.3% of resting control. 5 min after exercise, however, moderate reductions in ischemic segment shortening were noted after both temporary stenosis and persistent stenosis runs, and these persisted for 30 min post-exercise. It is concluded that regional left ventricular dysfunction may persist for a significant period of time after exercise-induced ischemia. Furthermore, early after exercise, dysfunction is related to persistent abnormalities of myocardial blood flow, whereas late after exercise it is independent of primary reductions in myocardial blood flow.

UI MeSH Term Description Entries
D008365 Manometry Measurement of the pressure or tension of liquids or gases with a manometer. Tonometry,Manometries
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D001783 Blood Flow Velocity A value equal to the total volume flow divided by the cross-sectional area of the vascular bed. Blood Flow Velocities,Flow Velocities, Blood,Flow Velocity, Blood,Velocities, Blood Flow,Velocity, Blood Flow
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D C Homans, and E Sublett, and X Z Dai, and R J Bache
January 1987, Journal of the American College of Cardiology,
D C Homans, and E Sublett, and X Z Dai, and R J Bache
February 1985, Sheng li xue bao : [Acta physiologica Sinica],
D C Homans, and E Sublett, and X Z Dai, and R J Bache
October 1994, Zeitschrift fur Kardiologie,
D C Homans, and E Sublett, and X Z Dai, and R J Bache
March 1988, American heart journal,
D C Homans, and E Sublett, and X Z Dai, and R J Bache
October 1996, The American journal of cardiology,
D C Homans, and E Sublett, and X Z Dai, and R J Bache
October 2016, Hemodialysis international. International Symposium on Home Hemodialysis,
D C Homans, and E Sublett, and X Z Dai, and R J Bache
November 1990, American heart journal,
D C Homans, and E Sublett, and X Z Dai, and R J Bache
January 2004, Medicinski arhiv,
D C Homans, and E Sublett, and X Z Dai, and R J Bache
March 1991, Journal of the American College of Cardiology,
D C Homans, and E Sublett, and X Z Dai, and R J Bache
April 1992, Clinical cardiology,
Copied contents to your clipboard!