Proteins from the prokaryotic nucleoid. A protein-protein cross-linking study on the quaternary structure of Escherichia coli DNA-binding protein NS (HU). 1986

M A Losso, and R T Pawlik, and M A Canonaco, and C O Gualerzi

Escherichia coli DNA-binding proteins NS1, NS2 and NS (NS1 + NS2) react with the protein-protein bifunctional cross-linking reagents dimethylsuberimidate and dimethyladipimidate to yield oligomers up to hexamers. The former reagent, with the longer arm, is more efficient than the other shorter one. Both one- and two-dimensional gel electrophoreses show that the cross-linked trimers are homogeneous, while the dimers appear heterogeneous, suggesting that at least two types of dimers but geometrically equivalent trimers are formed. In the presence of DNA, the cross-linking reaction with either reagent yields fewer dimers and more of the larger products. The yield of cross-linked products of various sizes was determined for NS1, NS2 and NS as a function of the protein concentration (0.03-3000 microM). From the results obtained in these experiments, we derived a model of quaternary structure in which dimers and tetramers are predominant in very solutions of the proteins. Above a critical concentration (10-50 microM), interactions among tetramers become increasingly important, yielding octamers and perhaps larger products. Our data do not support a recently proposed model in which the DNA is packaged around a protein disc consisting of 8-10 NS dimers.

UI MeSH Term Description Entries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

M A Losso, and R T Pawlik, and M A Canonaco, and C O Gualerzi
May 1988, Molecular microbiology,
M A Losso, and R T Pawlik, and M A Canonaco, and C O Gualerzi
February 1995, FEBS letters,
M A Losso, and R T Pawlik, and M A Canonaco, and C O Gualerzi
May 1991, Research in microbiology,
M A Losso, and R T Pawlik, and M A Canonaco, and C O Gualerzi
January 1984, European journal of biochemistry,
M A Losso, and R T Pawlik, and M A Canonaco, and C O Gualerzi
February 1988, FEBS letters,
M A Losso, and R T Pawlik, and M A Canonaco, and C O Gualerzi
November 2012, Journal of bacteriology,
M A Losso, and R T Pawlik, and M A Canonaco, and C O Gualerzi
January 1978, Cold Spring Harbor symposia on quantitative biology,
M A Losso, and R T Pawlik, and M A Canonaco, and C O Gualerzi
October 1996, Journal of bacteriology,
M A Losso, and R T Pawlik, and M A Canonaco, and C O Gualerzi
October 1990, Molecular & general genetics : MGG,
Copied contents to your clipboard!