Insulin induces progressive insulin resistance in cultured rat adipocytes. Sequential effects at receptor and multiple postreceptor sites. 1986

W T Garvey, and J M Olefsky, and S Marshall

We have examined the ability of insulin to regulate insulin action in primary cultured adipocytes, and found that insulin induces progressive insulin resistance in this target tissue. To assess effects at both receptor and postreceptor sites, we cultured cells in the absence (control) and presence of 100 ng/ml insulin, and, after various times, measured the dose response of insulin's ability to bind cell-surface receptors and stimulate 2-deoxyglucose transport. In control cells, insulin binding (0.2 ng/ml) was increased 10-13% due to an apparent increase in receptor affinity (6-24 h). A comparable increase in affinity was also observed in treated cells; however, concomitantly, insulin decreased the number of cell-surface receptors causing a slowly progressive net decrease in binding after a 6-10-h lag (maximal 30% at 24 h). When insulin action was assessed in control cells, the functional consequence of increased receptor binding was hypersensitization (i.e., increased insulin sensitivity) manifested by a leftward shift in the 2-deoxyglucose dose-response curve. On the other hand, in the treated cells, insulin produced insulin resistance initially by decreasing insulin sensitivity. The ED50 for insulin stimulation of glucose transport increased 84% from 0.31 to 0.57 ng/ml at 6 h without a net change in insulin binding; this was the result of a decrease in coupling efficiency between occupied receptors and the insulin effect. Receptor uncoupling progressively increased in severity, but before the full effect was reached insulin also caused a rapid decline in maximally stimulated glucose transport rates (between 6 and 10 h). This decrease in insulin responsiveness (maximal 52%) exacerbated overall insulin resistance, and was indicative of a postreceptor defect in the glucose transport system. Finally, insulin-induced receptor downregulation contributed, along with uncoupling, to a further decrease in insulin sensitivity, and constituted a more long-term regulatory mechanism. We also observed that insulin could regulate the basal glucose transport system by preventing a progressive rise in basal transport observed in control cells. In conclusion, primary cultured adipocytes can be used to study long-term regulation of insulin action. We found that insulin induces progressive insulin resistance with sequential effects at multiple sites in the insulin action pathway, including decreased coupling efficiency between occupied receptors and stimulated glucose transport, a postreceptor defect in insulin responsiveness of the glucose transport system, and receptor downregulation. These mechanisms may be relevant to the cellular defects in insulin action present i

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007333 Insulin Resistance Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS. Insulin Sensitivity,Resistance, Insulin,Sensitivity, Insulin
D008297 Male Males
D008757 Methylglucosides Methylglucopyranosides
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose

Related Publications

W T Garvey, and J M Olefsky, and S Marshall
February 1992, The Journal of biological chemistry,
W T Garvey, and J M Olefsky, and S Marshall
August 1983, Biochemical and biophysical research communications,
W T Garvey, and J M Olefsky, and S Marshall
April 2000, Journal of cellular biochemistry,
W T Garvey, and J M Olefsky, and S Marshall
August 1983, Canadian journal of physiology and pharmacology,
W T Garvey, and J M Olefsky, and S Marshall
August 2008, The Journal of biological chemistry,
W T Garvey, and J M Olefsky, and S Marshall
June 1980, The Journal of clinical investigation,
W T Garvey, and J M Olefsky, and S Marshall
November 1981, Endocrinology,
Copied contents to your clipboard!