Differential roles of prelimbic and infralimbic cholinergic neurotransmissions in control of cardiovascular responses to restraint stress in rats. 2022

Leandro A Oliveira, and Ivy I Carvalho, and Renata Y Kurokawa, and Josiane de O Duarte, and Cristiane Busnardo, and Carlos C Crestani
Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, Brazil.

Previous studies showed a prominent role of the medial prefrontal cortex (mPFC), especially the prelimbic (PL) and infralimbic (IL) subregions, in behavioral and physiological responses to stressful stimuli. Nevertheless, the local neurochemical mechanisms involved are not completely understood. In this sense, previous studies identified cholinergic terminals within the mPFC, and stressful stimuli increased local acetylcholine release. Despite these pieces of evidence, the specific role of cholinergic neurotransmission in different subregions of the mPFC controlling the cardiovascular responses to stress has never been systematically evaluated. Therefore, the purpose of this study was to investigate the involvement of cholinergic neurotransmission present within PL and IL in cardiovascular responses to an acute session of restraint stress in rats. For this, rats received bilateral microinjection of the choline uptake inhibitor hemicholinium-3 before exposure to restraint stress. The arterial pressure and heart rate (HR) increases and the decrease in tail skin temperature as an indirect measurement of sympathetically-mediated cutaneous vasoconstriction were recorded throughout the restraint stress session. The results showed that the depletion of acetylcholine within the PL caused by local microinjection of hemicholinium-3 decreased the tachycardia to restraint stress, but without affecting the pressor response and the drop in tail skin temperature. Conversely, IL treatment with hemicholinium-3 decreased the restraint-evoked pressor response and the sympathetically-mediated cutaneous vasoconstriction without interfering with the HR response. Taken together, these results indicate functional differences of cholinergic neurotransmission within the PL and IL in control of cardiovascular and autonomic responses to stressful stimuli.

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D012149 Restraint, Physical Use of a device for the purpose of controlling movement of all or part of the body. Splinting and casting are FRACTURE FIXATION. Immobilization, Physical,Physical Restraint,Physical Immobilization,Physical Restraints,Restraints, Physical
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D006426 Hemicholinium 3 A potent inhibitor of the high affinity uptake system for CHOLINE. It has less effect on the low affinity uptake system. Since choline is one of the components of ACETYLCHOLINE, treatment with hemicholinium can deplete acetylcholine from cholinergic terminals. Hemicholinium 3 is commonly used as a research tool in animal and in vitro experiments. Hemicholinium
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001341 Autonomic Nervous System The ENTERIC NERVOUS SYSTEM; PARASYMPATHETIC NERVOUS SYSTEM; and SYMPATHETIC NERVOUS SYSTEM taken together. Generally speaking, the autonomic nervous system regulates the internal environment during both peaceful activity and physical or emotional stress. Autonomic activity is controlled and integrated by the CENTRAL NERVOUS SYSTEM, especially the HYPOTHALAMUS and the SOLITARY NUCLEUS, which receive information relayed from VISCERAL AFFERENTS. Vegetative Nervous System,Visceral Nervous System,Autonomic Nervous Systems,Nervous System, Autonomic,Nervous System, Vegetative,Nervous System, Visceral,Nervous Systems, Autonomic,Nervous Systems, Vegetative,Nervous Systems, Visceral,System, Autonomic Nervous,System, Vegetative Nervous,System, Visceral Nervous,Systems, Autonomic Nervous,Systems, Vegetative Nervous,Systems, Visceral Nervous,Vegetative Nervous Systems,Visceral Nervous Systems
D013315 Stress, Psychological Stress wherein emotional factors predominate. Cumulative Stress, Psychological,Emotional Stress,Individual Stressors,Life Stress,Psychological Cumulative Stress,Psychological Stress Experience,Psychological Stress Overload,Psychologically Stressful Conditions,Stress Experience, Psychological,Stress Measurement, Psychological,Stress Overload, Psychological,Stress Processes, Psychological,Stress, Emotional,Stressful Conditions, Psychological,Psychological Stress,Stress, Psychologic,Stressor, Psychological,Condition, Psychological Stressful,Condition, Psychologically Stressful,Conditions, Psychologically Stressful,Cumulative Stresses, Psychological,Experience, Psychological Stress,Individual Stressor,Life Stresses,Measurement, Psychological Stress,Overload, Psychological Stress,Psychologic Stress,Psychological Cumulative Stresses,Psychological Stress Experiences,Psychological Stress Measurement,Psychological Stress Measurements,Psychological Stress Overloads,Psychological Stress Processe,Psychological Stress Processes,Psychological Stresses,Psychological Stressful Condition,Psychological Stressful Conditions,Psychological Stressor,Psychological Stressors,Psychologically Stressful Condition,Stress Experiences, Psychological,Stress Processe, Psychological,Stress, Life,Stress, Psychological Cumulative,Stressful Condition, Psychological,Stressful Condition, Psychologically,Stressor, Individual
D014179 Neurotransmitter Uptake Inhibitors Drugs that inhibit the transport of neurotransmitters into axon terminals or into storage vesicles within terminals. For many transmitters, uptake determines the time course of transmitter action so inhibiting uptake prolongs the activity of the transmitter. Blocking uptake may also deplete available transmitter stores. Many clinically important drugs are uptake inhibitors although the indirect reactions of the brain rather than the acute block of uptake itself is often responsible for the therapeutic effects. Reuptake Inhibitors, Neurotransmitter,Transmitter Uptake Inhibitors, Neuronal,Inhibitors, Neurotransmitter Uptake,Uptake Inhibitors, Neurotransmitter,Inhibitors, Neurotransmitter Reuptake,Neurotransmitter Reuptake Inhibitors

Related Publications

Leandro A Oliveira, and Ivy I Carvalho, and Renata Y Kurokawa, and Josiane de O Duarte, and Cristiane Busnardo, and Carlos C Crestani
January 2021, Frontiers in physiology,
Leandro A Oliveira, and Ivy I Carvalho, and Renata Y Kurokawa, and Josiane de O Duarte, and Cristiane Busnardo, and Carlos C Crestani
August 2009, Journal of neuroscience research,
Leandro A Oliveira, and Ivy I Carvalho, and Renata Y Kurokawa, and Josiane de O Duarte, and Cristiane Busnardo, and Carlos C Crestani
January 2000, Hypertension (Dallas, Tex. : 1979),
Leandro A Oliveira, and Ivy I Carvalho, and Renata Y Kurokawa, and Josiane de O Duarte, and Cristiane Busnardo, and Carlos C Crestani
November 2016, Stress (Amsterdam, Netherlands),
Leandro A Oliveira, and Ivy I Carvalho, and Renata Y Kurokawa, and Josiane de O Duarte, and Cristiane Busnardo, and Carlos C Crestani
October 2014, Neuropharmacology,
Leandro A Oliveira, and Ivy I Carvalho, and Renata Y Kurokawa, and Josiane de O Duarte, and Cristiane Busnardo, and Carlos C Crestani
May 2010, Brain research,
Leandro A Oliveira, and Ivy I Carvalho, and Renata Y Kurokawa, and Josiane de O Duarte, and Cristiane Busnardo, and Carlos C Crestani
January 2004, Synapse (New York, N.Y.),
Leandro A Oliveira, and Ivy I Carvalho, and Renata Y Kurokawa, and Josiane de O Duarte, and Cristiane Busnardo, and Carlos C Crestani
March 2018, Neuropharmacology,
Leandro A Oliveira, and Ivy I Carvalho, and Renata Y Kurokawa, and Josiane de O Duarte, and Cristiane Busnardo, and Carlos C Crestani
September 2017, European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology,
Leandro A Oliveira, and Ivy I Carvalho, and Renata Y Kurokawa, and Josiane de O Duarte, and Cristiane Busnardo, and Carlos C Crestani
June 2016, Neuropeptides,
Copied contents to your clipboard!