Properties of a serine hydroxymethyltransferase in which an active site histidine has been changed to an asparagine by site-directed mutagenesis. 1986

S Hopkins, and V Schirch

Histidine 228 at the active site of Escherichia coli serine hydroxymethyltransferase was replaced with an asparagine. The mutant enzyme was expressed in a strain of E. coli that lacks wild type enzyme. Absorption spectra, circular dichroism spectra, and differential scanning calorimetry thermograms suggest that the amino acid change at the active site causes no detectable change in the tertiary structure of the enzyme. Kinetic studies demonstrated that kcat for the mutant enzyme is about 25% of the value for the wild type enzyme with either L-serine or allothreonine as substrate. Km or Kd values for amino acid substrates and reduced folate compounds were 2-10-fold larger with the mutant enzyme. The rate of interconversion of several enzyme-glycine complexes showed that the conversion of the external aldimine to the quinoid complex is not the rate-determining step for either the mutant or wild type enzyme in the presence of tetrahydrofolate. The binding of L-serine to the wild type enzyme gives a more thermally stable enzyme and increases its affinity for tetrahydrofolate. These effects are not found when L-serine binds to the mutant enzyme. The studies demonstrate that histidine 228 is not a catalytically essential residue and suggest that it is involved in interacting with either the amino acid substrate or the enzyme-bound pyridoxal phosphate.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D001216 Asparagine A non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue. It is biosynthesized from ASPARTIC ACID and AMMONIA by asparagine synthetase. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) L-Asparagine
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012696 Glycine Hydroxymethyltransferase A pyridoxal phosphate enzyme that catalyzes the reaction of glycine and 5,10-methylene-tetrahydrofolate to form serine. It also catalyzes the reaction of glycine with acetaldehyde to form L-threonine. EC 2.1.2.1. Serine Aldolase,Serine Hydroxymethylase,Serine Hydroxymethyltransferase,Serine Transhydroxymethylase,Threonine Aldolase,Allothreonine Aldolase,Aldolase, Allothreonine,Aldolase, Serine,Aldolase, Threonine,Hydroxymethylase, Serine,Hydroxymethyltransferase, Glycine,Hydroxymethyltransferase, Serine,Transhydroxymethylase, Serine

Related Publications

S Hopkins, and V Schirch
November 1995, Biochemical Society transactions,
S Hopkins, and V Schirch
May 1996, Protein expression and purification,
S Hopkins, and V Schirch
September 1998, Protein science : a publication of the Protein Society,
S Hopkins, and V Schirch
October 1982, The Journal of biological chemistry,
Copied contents to your clipboard!