Juvenile chronic myelogenous leukemia: surface antigen phenotyping by monoclonal antibodies and cytogenetic studies. 1986

K Shannon, and G Nunez, and L W Dow, and A G Weinberg, and Y Sato, and P Stastny, and G R Buchanan

Cells from three children with juvenile chronic myelogenous leukemia were studied using culture in semisolid media, cytogenetic analysis, and surface staining with the monocyte-specific monoclonal antibodies 61D3 and 63D3. The percentage of bone marrow mononuclear cells that were 61D3- and 63D3-positive was markedly increased in all three patients. Bone marrow and peripheral blood mononuclear cells exhibited exceptionally bright immunofluorescence with these antibodies. The presence of monocyte-specific antigens on the surface of juvenile chronic myelogenous leukemia cells suggests that they are derived from a precursor with monocytic characteristics. A specific chromosomal abnormality (47,XY+21) was present in fresh bone marrow cells from one patient; in contrast, 50 metaphases from phytohemagglutinin-stimulated peripheral blood contained a normal karyotype. The chromosomal abnormality was also identified in myeloid colonies grown in vitro from this patient. Granulocytic elements were demonstrated in tissue sections and in cultured myeloid colonies from this child. Our data suggest that malignant transformation in juvenile chronic myelogenous leukemia involves a myeloid progenitor population capable of differentiation in vitro to cells with monocytic or granulocytic characteristics.

UI MeSH Term Description Entries
D007621 Karyotyping Mapping of the KARYOTYPE of a cell. Karyotype Analysis Methods,Analysis Method, Karyotype,Analysis Methods, Karyotype,Karyotype Analysis Method,Karyotypings,Method, Karyotype Analysis,Methods, Karyotype Analysis
D007951 Leukemia, Myeloid Form of leukemia characterized by an uncontrolled proliferation of the myeloid lineage and their precursors (MYELOID PROGENITOR CELLS) in the bone marrow and other sites. Granulocytic Leukemia,Leukemia, Granulocytic,Leukemia, Myelocytic,Leukemia, Myelogenous,Myelocytic Leukemia,Myelogenous Leukemia,Myeloid Leukemia,Leukemia, Monocytic, Chronic,Monocytic Leukemia, Chronic,Chronic Monocytic Leukemia,Chronic Monocytic Leukemias,Granulocytic Leukemias,Leukemia, Chronic Monocytic,Leukemias, Chronic Monocytic,Leukemias, Granulocytic,Leukemias, Myelocytic,Leukemias, Myelogenous,Leukemias, Myeloid,Monocytic Leukemias, Chronic,Myelocytic Leukemias,Myelogenous Leukemias,Myeloid Leukemias
D008297 Male Males
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002869 Chromosome Aberrations Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS. Autosome Abnormalities,Cytogenetic Aberrations,Abnormalities, Autosome,Abnormalities, Chromosomal,Abnormalities, Chromosome,Chromosomal Aberrations,Chromosome Abnormalities,Cytogenetic Abnormalities,Aberration, Chromosomal,Aberration, Chromosome,Aberration, Cytogenetic,Aberrations, Chromosomal,Aberrations, Chromosome,Aberrations, Cytogenetic,Abnormalities, Cytogenetic,Abnormality, Autosome,Abnormality, Chromosomal,Abnormality, Chromosome,Abnormality, Cytogenetic,Autosome Abnormality,Chromosomal Aberration,Chromosomal Abnormalities,Chromosomal Abnormality,Chromosome Aberration,Chromosome Abnormality,Cytogenetic Aberration,Cytogenetic Abnormality
D002904 Chromosomes, Human, 21-22 and Y The short, acrocentric human chromosomes, called group G in the human chromosome classification. This group consists of chromosome pairs 21 and 22 and the Y chromosome. Chromosomes G,Group G Chromosomes,Chromosomes, Human, 21 22,Chromosomes, Human, 21-22,Chromosome, Group G,Chromosomes, Group G,Group G Chromosome
D003114 Colony-Forming Units Assay A cytologic technique for measuring the functional capacity of stem cells by assaying their activity. Clonogenic Cell Assay,Stem Cell Assay,Clonogenic Cell Assays,Colony Forming Units Assays,Colony-Forming Units Assays,Stem Cell Assays,Assay, Clonogenic Cell,Assay, Colony-Forming Units,Assay, Stem Cell,Assays, Clonogenic Cell,Assays, Colony-Forming Units,Assays, Stem Cell,Colony Forming Units Assay
D005260 Female Females
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein

Related Publications

K Shannon, and G Nunez, and L W Dow, and A G Weinberg, and Y Sato, and P Stastny, and G R Buchanan
May 1979, Blood,
K Shannon, and G Nunez, and L W Dow, and A G Weinberg, and Y Sato, and P Stastny, and G R Buchanan
January 1988, The American journal of pediatric hematology/oncology,
K Shannon, and G Nunez, and L W Dow, and A G Weinberg, and Y Sato, and P Stastny, and G R Buchanan
February 1996, American journal of clinical pathology,
K Shannon, and G Nunez, and L W Dow, and A G Weinberg, and Y Sato, and P Stastny, and G R Buchanan
April 1988, Singapore medical journal,
K Shannon, and G Nunez, and L W Dow, and A G Weinberg, and Y Sato, and P Stastny, and G R Buchanan
December 1983, Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society,
K Shannon, and G Nunez, and L W Dow, and A G Weinberg, and Y Sato, and P Stastny, and G R Buchanan
January 1985, Folia haematologica (Leipzig, Germany : 1928),
K Shannon, and G Nunez, and L W Dow, and A G Weinberg, and Y Sato, and P Stastny, and G R Buchanan
July 1990, Cancer genetics and cytogenetics,
K Shannon, and G Nunez, and L W Dow, and A G Weinberg, and Y Sato, and P Stastny, and G R Buchanan
June 1996, Archives of dermatology,
K Shannon, and G Nunez, and L W Dow, and A G Weinberg, and Y Sato, and P Stastny, and G R Buchanan
January 1995, Immunologic research,
K Shannon, and G Nunez, and L W Dow, and A G Weinberg, and Y Sato, and P Stastny, and G R Buchanan
August 1966, Pediatrics,
Copied contents to your clipboard!