The Electronic Origin of Far-Red-Light-Driven Oxygenic Photosynthesis. 2022

Abhishek Sirohiwal, and Dimitrios A Pantazis
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.

Photosystem-II uses sunlight to trigger charge separation and catalyze water oxidation. Intrinsic properties of chlorophyll a pigments define a natural "red limit" of photosynthesis at ≈680 nm. Nevertheless, charge separation can be triggered with far-red photons up to 800 nm, without altering the nature of light-harvesting pigments. Here we identify the electronic origin of this remarkable phenomenon using quantum chemical and multiscale simulations on a native Photosystem-II model. We find that the reaction center is preorganized for charge separation in the far-red region by specific chlorophyll-pheophytin pairs, potentially bypassing the light-harvesting apparatus. Charge transfer can occur along two distinct pathways with one and the same pheophytin acceptor (PheoD1 ). The identity of the donor chlorophyll (ChlD1 or PD1 ) is wavelength-dependent and conformational dynamics broaden the sampling of the far-red region by the two charge-transfer states. The two pathways rationalize spectroscopic observations and underpin designed extensions of the photosynthetically active radiation limit.

UI MeSH Term Description Entries
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010788 Photosynthesis The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001) Calvin Cycle,Calvin-Benson Cycle,Calvin-Benson-Bassham Cycle,Carbon Fixation, Photosynthetic,Reductive Pentose Phosphate Cycle,Dark Reactions of Photosynthesis,Calvin Benson Bassham Cycle,Calvin Benson Cycle,Cycle, Calvin,Cycle, Calvin-Benson,Cycle, Calvin-Benson-Bassham,Photosynthesis Dark Reaction,Photosynthesis Dark Reactions,Photosynthetic Carbon Fixation
D002734 Chlorophyll Porphyrin derivatives containing magnesium that act to convert light energy in photosynthetic organisms. Phyllobilins,Chlorophyll 740
D004581 Electronics The study, control, and application of the conduction of ELECTRICITY through gases or vacuum, or through semiconducting or conducting materials. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Electronic
D000077194 Chlorophyll A A form of chlorophyll that absorbs light in the violet to red spectrum (approximately 400-700 nm wavelength range) and reflects green light (500-570 nm wavelength), which imparts the characteristic green color to land plants. It is essential for oxygenic PHOTOSYNTHESIS. Chlorophyll A2
D045332 Photosystem II Protein Complex A large multisubunit protein complex found in the THYLAKOID MEMBRANE. It uses light energy derived from LIGHT-HARVESTING PROTEIN COMPLEXES to catalyze the splitting of WATER into DIOXYGEN and of reducing equivalents of HYDROGEN. Chloroplast Reaction Center Protein D1,D1 Photosystem II Protein, Plant,Light-Induced D1 Protein, Photosystem II,Oxygen Evolving Enzyme,PRCP II D2 Protein,Photosystem II,Photosystem II Reaction Center,Photosystem II Reaction Center Complex D1 Protein,Photosystem II Reaction Center Complex D2 Protein,RCII-D1 Protein,Water Oxidase,Water-Splitting Enzyme of Photosynthesis,Enzyme, Oxygen Evolving,Evolving Enzyme, Oxygen,Light Induced D1 Protein, Photosystem II,Oxidase, Water,Photosynthesis Water-Splitting Enzyme,Water Splitting Enzyme of Photosynthesis

Related Publications

Abhishek Sirohiwal, and Dimitrios A Pantazis
February 2024, Annual review of physical chemistry,
Abhishek Sirohiwal, and Dimitrios A Pantazis
December 2019, Photosynthesis research,
Abhishek Sirohiwal, and Dimitrios A Pantazis
March 1998, Trends in biochemical sciences,
Abhishek Sirohiwal, and Dimitrios A Pantazis
April 2020, Biochimica et biophysica acta. Bioenergetics,
Abhishek Sirohiwal, and Dimitrios A Pantazis
February 2020, The New phytologist,
Abhishek Sirohiwal, and Dimitrios A Pantazis
January 2011, Photosynthesis research,
Abhishek Sirohiwal, and Dimitrios A Pantazis
January 2020, Plant & cell physiology,
Abhishek Sirohiwal, and Dimitrios A Pantazis
September 2021, Proceedings. Biological sciences,
Abhishek Sirohiwal, and Dimitrios A Pantazis
February 2017, Journal of plant physiology,
Copied contents to your clipboard!