Expression and development of phenylethanolamine N-methyltransferase (PNMT) in rat brain stem: studies with glucocorticoids. 1986

M C Bohn, and M Goldstein, and I B Black

To study the differentiation of adrenergic (epinephrine-synthesizing) neurons in brain, the initial appearance and ontogeny of phenylethanolamine N-methyltransferase (PNMT), a specific marker of the adrenergic phenotype, were studied with immunocytochemistry and catalytic assay. The appearance of immunoreactivity to dopamine beta-hydroxylase (DBH-IR), an enzyme common to the noradrenergic and adrenergic phenotypes, was also studied. DBH-IR was initially observed on embryonic Day 13 (E13) in cells located on the ventrolateral floor and wall of the rhombencephalon. A day later (E14), PNMT-IR cells and PNMT catalytic activity were observed in the rhombencephalon suggesting that, as in the adrenal gland, noradrenergic expression precedes adrenergic expression. The PNMT-IR cells were presumed to be precursors of C1 neurons since they were located in the ventrolateral medulla oblongata. Cells located in the wall of the medulla which appeared to be migrating ventrally to the C1 group also contained PNMT-IR. On E15, cells which had PNMT-IR processes coursing through the germinal zone were observed dorsally near the fourth ventricle. Although the location of the C1 cell group was apparent when PNMT was initially expressed, the dorsal C2 and C3 adrenergic cell groups were not evident until late in gestation on E19. Even in the term embryo there appeared to be PNMT-IR cells which had not yet reached their final destination. On E14 and E15, PNMT-IR cells were also observed on the floor of the pons just rostral to the pontine flexure. However, these were not observed in older embryos, suggesting that transient expression of PNMT occurs in brain, as well as in the periphery. To determine whether glucocorticoids regulate brain PNMT, we examined the effects of altered glucocorticoid levels. In contrast to PNMT in the sympathetic nervous system, PNMT activity in medulla oblongata was not affected in neonates or adults by the decrease in glucocorticoids following adrenalectomy or hypophysectomy. Conversely, elevation of glucocorticoids by hormonal treatment did not alter PNMT in neonates. Notably, however, treatment of pregnant rats with dexamethasone on E18-E21, but not earlier, increased PNMT activity in the fetal brain stem. These observations suggest that PNMT expression and development is regulated by different factors in cells derived from neural crest and tube. PNMT is expressed earlier in brain than in adrenal and sympathetic ganglia. Further, the development of PNMT in the periphery, but not in the brain, is dependent on maintenance of physiological levels of glucocorticoids.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D010625 Phenylethanolamine N-Methyltransferase A methyltransferase that catalyzes the reaction of S-adenosyl-L-methionine and phenylethanolamine to yield S-adenosyl-L-homocysteine and N-methylphenylethanolamine. It can act on various phenylethanolamines and converts norepinephrine into epinephrine. (From Enzyme Nomenclature, 1992) EC 2.1.1.28. Phenethanolamine N-Methyltransferase,Noradrenalin N-Methyltransferase,Noradrenaline N-Methyltransferase,Norepinephrine Methyltransferase,Norepinephrine N-Methyltransferase,Methyltransferase, Norepinephrine,Noradrenalin N Methyltransferase,Noradrenaline N Methyltransferase,Norepinephrine N Methyltransferase,Phenethanolamine N Methyltransferase,Phenylethanolamine N Methyltransferase
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D003345 Corticosterone An adrenocortical steroid that has modest but significant activities as a mineralocorticoid and a glucocorticoid. (From Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1437)
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D005260 Female Females
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D005938 Glucocorticoids A group of CORTICOSTEROIDS that affect carbohydrate metabolism (GLUCONEOGENESIS, liver glycogen deposition, elevation of BLOOD SUGAR), inhibit ADRENOCORTICOTROPIC HORMONE secretion, and possess pronounced anti-inflammatory activity. They also play a role in fat and protein metabolism, maintenance of arterial blood pressure, alteration of the connective tissue response to injury, reduction in the number of circulating lymphocytes, and functioning of the central nervous system. Glucocorticoid,Glucocorticoid Effect,Glucorticoid Effects,Effect, Glucocorticoid,Effects, Glucorticoid

Related Publications

M C Bohn, and M Goldstein, and I B Black
June 1992, Cellular and molecular neurobiology,
M C Bohn, and M Goldstein, and I B Black
November 1988, Neuroscience letters,
M C Bohn, and M Goldstein, and I B Black
December 1992, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
M C Bohn, and M Goldstein, and I B Black
January 1990, Histochemistry,
M C Bohn, and M Goldstein, and I B Black
April 1987, Neuroscience letters,
M C Bohn, and M Goldstein, and I B Black
September 1974, The Journal of pharmacology and experimental therapeutics,
M C Bohn, and M Goldstein, and I B Black
May 2001, American journal of medical genetics,
M C Bohn, and M Goldstein, and I B Black
October 1972, Journal of medicinal chemistry,
Copied contents to your clipboard!