Monoclonal antibody selection and analysis of a recombinant DNA-derived surface immunogen of Treponema pallidum expressed in Escherichia coli. 1986

M A Swancutt, and D A Twehous, and M V Norgard

Monoclonal antibodies directed against a 34-kilodalton (kDa) surface immunogen of Treponema pallidum were used to select 12 unique T. pallidum DNA-containing Escherichia coli recombinant clones expressing the recombinant form of the 34-kDa immunogen. The phenotype of the clones was dependent on the presence of recombinant plasmids in the host cell. Restriction enzyme analyses and Southern hybridization of plasmid DNA demonstrated that all recombinant clones contained common DNA sequences of T. pallidum origin. Further hybridization analyses revealed that the cloned T. pallidum DNA sequences were an accurate representation of the T. pallidum genomic DNA arrangement. Purified immunoglobulin G (IgG) from pooled immune rabbit serum reacted with the clones, while IgG from pooled normal rabbit serum did not. Results of immunological experiments and Southern hybridization indicated that a similar 34-kDa immunogen was present in T. pallidum subsp. pertenue, but it was absent from four species of nonpathogenic treponemes tested, as well as from homogenates of normal rabbit testicular tissue. Metabolic labeling of the E. coli clones with [35S]methionine followed by radioimmunoprecipitation with monoclonal antibodies revealed that the 35S-labeled recombinant and 125I-labeled native (T. pallidum) forms of the antigen had identical electrophoretic mobilities. The production of a complete antigen by E. coli was independent of the orientation of the foreign gene sequence with respect to vector DNA. T. pallidum also produced an apparently identical immunoprecipitable 34-kDa antigen after metabolic labeling with [35S]methionine in the presence of cycloheximide. The apparent specificity of the 34-kDa immunogen for pathogenic treponemes and its native cell surface association on T. pallidum justifies a more intense study of this antigen and its corresponding gene.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000942 Antigens, Bacterial Substances elaborated by bacteria that have antigenic activity. Bacterial Antigen,Bacterial Antigens,Antigen, Bacterial
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base
D014210 Treponema pallidum The causative agent of venereal and non-venereal syphilis as well as yaws.

Related Publications

M A Swancutt, and D A Twehous, and M V Norgard
November 1986, Infection and immunity,
M A Swancutt, and D A Twehous, and M V Norgard
August 1983, Infection and immunity,
M A Swancutt, and D A Twehous, and M V Norgard
March 1986, Journal of clinical microbiology,
M A Swancutt, and D A Twehous, and M V Norgard
September 1989, Microbial pathogenesis,
M A Swancutt, and D A Twehous, and M V Norgard
April 1982, Science (New York, N.Y.),
Copied contents to your clipboard!