Difference between subfragment-1 and heavy meromyosin in their interaction with F-actin. 1986

K Yamamoto, and T Sekine

To elucidate the difference between subfragment-1 and heavy meromyosin in their interaction with F-actin, we used limited tryptic digestion and cross-linking with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide. The binding of actin to subfragment-1 lowers the susceptibility of the 50K-20K junction of its heavy chain to tryptic digestion. At a molar ratio of one actin to one subfragment-1, all the sites were gradually cleaved by trypsin whereas the sites were completely protected in the presence of a 2-fold molar excess of actin over subfragment-1. In the case of heavy meromyosin, nearly half of the sites were protected completely by the presence of an equimolar amount of actin to its heads suggesting that the two heads of heavy meromyosin bound actin in a different manner. The rate of the cross-linking reaction between subfragment-1 heavy chain and actin with 1-ethyl-3-[3-(dimethylamino) propyl]carbodiimide also depended on the molar ratio of actin to subfragment-1. The rate was maximum at a molar ratio of about 5 actin to 1 subfragment-1. When heavy meromyosin was cross-linked to actin, the maximum rate was observed at a molar ratio of about 3 actin to 1 heavy meromyosin head, the level being about 60% that for subfragment-1 and actin. It was suggested that the presence of the subfragment-2 portion of heavy meromyosin caused these differences by restricting the motion of the two heads.

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002918 Chymotrypsin A serine endopeptidase secreted by the pancreas as its zymogen, CHYMOTRYPSINOGEN and carried in the pancreatic juice to the duodenum where it is activated by TRYPSIN. It selectively cleaves aromatic amino acids on the carboxyl side. Alpha-Chymotrypsin Choay,Alphacutanée,Avazyme
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005022 Ethyldimethylaminopropyl Carbodiimide Carbodiimide cross-linking reagent. 1-Ethyl-3-(3-Dimethylaminopropyl)Carbodiimide,3-(3-Dimethylaminopropyl)-1-Ethylcarbodiimide,EDAP-Carbodiimide,Carbodiimide, Ethyldimethylaminopropyl,EDAP Carbodiimide
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.

Related Publications

K Yamamoto, and T Sekine
January 1977, Acta biochimica et biophysica; Academiae Scientiarum Hungaricae,
K Yamamoto, and T Sekine
July 1970, Biochemical and biophysical research communications,
K Yamamoto, and T Sekine
May 1989, Biological chemistry Hoppe-Seyler,
K Yamamoto, and T Sekine
October 1984, Journal of biochemistry,
Copied contents to your clipboard!