Complement-mediated killing of Escherichia coli: dissipation of membrane potential by a C9-derived peptide. 1986

J R Dankert, and A F Esser

The molecular mechanism of complement-mediated killing of Gram-negative bacteria has yet to be resolved, but it is generally accepted that assembly of the membrane attack complex (MAC) of complement on the outer bacterial membrane is a required step. We have now investigated the effect of the MAC and its precursor complex, C5b-8, on the membrane potential (delta Em) across the inner bacterial membrane. Delta Em of whole cells was measured directly by using a lipophilic cation (tetraphenylphosphonium) that equilibrates with the potential or indirectly by measuring transport of solutes (proline and galactoside), which is dependent on delta Em. Our results indicate that the C5b-8 complex caused a transient collapse of delta Em in the absence of cell killing. Addition of C9 to allow formation of the MAC dissipated delta Em irreversibly, and the cells were killed. Since delta Em is generated across the inner membrane in Gram-negative bacteria, inner membrane vesicles were prepared and membrane potentials were generated either by adding D-lactate to energize the electron-transport chain or by creating a K+ diffusion potential with valinomycin. C9 added in the absence of earlier acting complement proteins had no effect on delta Em of isolated, actively respiring vesicles or on K+ diffusion potentials. In contrast, its C-terminal thrombin fragment (C9b), which has been shown earlier to contain the membrane-active domain of C9, efficiently collapsed delta Em in such vesicles. C9b did not require a specific receptor since it was effective on "right-side-out" and "inside-out" vesicles. These results are interpreted to indicate that a C9-derived fragment deenergizes cells and may be the causative agent for cell death.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011392 Proline A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. L-Proline,L Proline
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003186 Complement C9 A 63-kDa serum glycoprotein encoded by gene C9. Monomeric C9 (mC9) binds the C5b-8 complex to form C5b-9 which catalyzes the polymerization of C9 forming C5b-p9 (MEMBRANE ATTACK COMPLEX) and transmembrane channels leading to lysis of the target cell. Patients with C9 deficiency suffer from recurrent bacterial infections. C9 Complement,Complement 9,Complement Component 9,C9, Complement,Complement, C9,Component 9, Complement
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

J R Dankert, and A F Esser
January 2017, Frontiers in immunology,
J R Dankert, and A F Esser
February 1987, Journal of immunology (Baltimore, Md. : 1950),
J R Dankert, and A F Esser
July 1985, Proceedings of the National Academy of Sciences of the United States of America,
J R Dankert, and A F Esser
December 1981, Journal of immunology (Baltimore, Md. : 1950),
J R Dankert, and A F Esser
July 1984, Biochemical and biophysical research communications,
J R Dankert, and A F Esser
October 2012, Infection and immunity,
J R Dankert, and A F Esser
January 1991, Infection and immunity,
J R Dankert, and A F Esser
March 2012, Applied and environmental microbiology,
Copied contents to your clipboard!