Biosynthesis of the Pseudomonas aeruginosa common polysaccharide antigen by D-Rhamnosyltransferases WbpX and WbpY. 2022

Jacob Melamed, and Alexander Kocev, and Vladimir Torgov, and Vladimir Veselovsky, and Inka Brockhausen
Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L3N6, Canada.

The Gram-negative bacterium Pseudomonas aeruginosa simultaneously expresses two O-antigenic glycoforms. While the O-specific antigen (OSA) is variable in composition, the common polysaccharide antigen (CPA) is highly conserved and is composed of a homopolymer of D-rhamnose (D-Rha) in trisaccharide repeating units [D-Rhaα1-2-D-Rhaα1-3-D-Rhaɑ1-3]n. We have previously reported that α3-D-Rha-transferase WbpZ transfers a D-Rha residue from GDP-D-Rha to D-GlcNAcα-O-PO3-PO3-(CH2)11-O-phenyl. Genes encoding two more D-Rha-transferases are found in the O antigen gene cluster (wbpX and wbpY). In this study we showed that WbpX and WbpY recombinantly expressed in E. coli differ in their donor and acceptor specificities and have properties of GT-B folded enzymes of the GT4 glycosyltransferase family. NMR spectroscopic analysis of the WbpY reaction product showed that WbpY transferred one D-Rha residue in α1-3 linkage to synthetic D-Rhaα1-3-D-GlcNAcα-O-PO3-PO3-(CH2)11-O-phenyl acceptor. WbpX synthesized several products that contained D-Rha in both α1-2 and α1-3 linkages. Mass spectrometry indicated that the mixture of WbpX and WbpY efficiently catalyzed the synthesis of D-Rha oligomers in a non-processive mechanism. Since O antigens are virulence factors, these findings open the door to advancing technology for antibacterial drug discovery and vaccine development.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D012210 Rhamnose A methylpentose whose L- isomer is found naturally in many plant glycosides and some gram-negative bacterial lipopolysaccharides. Deoxymannose,Rhamnose, L-Isomer,Rhamnose, L Isomer
D016695 Glycosyltransferases Enzymes that catalyze the transfer of glycosyl groups to an acceptor. Most often another carbohydrate molecule acts as an acceptor, but inorganic phosphate can also act as an acceptor, such as in the case of PHOSPHORYLASES. Some of the enzymes in this group also catalyze hydrolysis, which can be regarded as transfer of a glycosyl group from the donor to water. Subclasses include the HEXOSYLTRANSFERASES; PENTOSYLTRANSFERASES; SIALYLTRANSFERASES; and those transferring other glycosyl groups. EC 2.4. Glycosyltransferase,Glycoside Transferases,Transferases, Glycoside
D019081 O Antigens The lipopolysaccharide-protein somatic antigens, usually from gram-negative bacteria, important in the serological classification of enteric bacilli. The O-specific chains determine the specificity of the O antigens of a given serotype. O antigens are the immunodominant part of the lipopolysaccharide molecule in the intact bacterial cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) O-Antigen,O-Specific Polysaccharides,O Antigen,O Antigen, Bacterial,O-Antigens,O-Specific Polysaccharide,Antigen, Bacterial O,Antigen, O,Antigens, O,Bacterial O Antigen,O Specific Polysaccharide,O Specific Polysaccharides,Polysaccharide, O-Specific,Polysaccharides, O-Specific

Related Publications

Jacob Melamed, and Alexander Kocev, and Vladimir Torgov, and Vladimir Veselovsky, and Inka Brockhausen
January 2013, mBio,
Jacob Melamed, and Alexander Kocev, and Vladimir Torgov, and Vladimir Veselovsky, and Inka Brockhausen
June 2015, Journal of bacteriology,
Jacob Melamed, and Alexander Kocev, and Vladimir Torgov, and Vladimir Veselovsky, and Inka Brockhausen
December 1995, Biokhimiia (Moscow, Russia),
Jacob Melamed, and Alexander Kocev, and Vladimir Torgov, and Vladimir Veselovsky, and Inka Brockhausen
April 1991, FEMS microbiology immunology,
Jacob Melamed, and Alexander Kocev, and Vladimir Torgov, and Vladimir Veselovsky, and Inka Brockhausen
October 1989, Carbohydrate research,
Jacob Melamed, and Alexander Kocev, and Vladimir Torgov, and Vladimir Veselovsky, and Inka Brockhausen
October 1993, FEMS immunology and medical microbiology,
Jacob Melamed, and Alexander Kocev, and Vladimir Torgov, and Vladimir Veselovsky, and Inka Brockhausen
March 2008, Journal of bacteriology,
Jacob Melamed, and Alexander Kocev, and Vladimir Torgov, and Vladimir Veselovsky, and Inka Brockhausen
October 1975, The Japanese journal of experimental medicine,
Jacob Melamed, and Alexander Kocev, and Vladimir Torgov, and Vladimir Veselovsky, and Inka Brockhausen
November 1964, Journal of bacteriology,
Jacob Melamed, and Alexander Kocev, and Vladimir Torgov, and Vladimir Veselovsky, and Inka Brockhausen
December 1985, The Journal of infectious diseases,
Copied contents to your clipboard!