Persistence of DNA synthesis arrest sites in the presence of T4 DNA polymerase and T4 gene 32, 44, 45 and 62 DNA polymerase accessory proteins. 1986

M F Charette, and D T Weaver, and M L DePamphilis

DNA synthesis by phage T4 DNA polymerase is arrested at specific sequences in single-stranded DNA templates. To determine whether or not T4 DNA polymerase accessory proteins 32, 44, 45 and 62 eliminated recognition of these arrest sites, unique primer-templates were constructed in which DNA synthesis began at a DNA primer located at different distances from palindromic and nonpalindromic arrest sites. Nucleotide positions that caused polymerase to pause or leave the template were identified by sequence analysis of 5'-end labeled nascent DNA chains. Stable hairpin structures at palindromic sequences were confirmed by acetylation of single-stranded sequences with bromoacetaldehyde. Our results confirmed that these T4 DNA polymerase accessory proteins stimulated T4 DNA polymerase activity and processivity on natural as well as homopolymer primer-templates. However, they did not alter recognition of DNA synthesis arrest sites by T4 DNA polymerase. Extensive DNA synthesis resulted from an increased rate of translocation and/or processivity to the same extent over all DNA sequences.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage
D013698 Templates, Genetic Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES. Genetic Template,Genetic Templates,Template, Genetic

Related Publications

M F Charette, and D T Weaver, and M L DePamphilis
October 1982, The Journal of biological chemistry,
M F Charette, and D T Weaver, and M L DePamphilis
February 1982, The Journal of biological chemistry,
M F Charette, and D T Weaver, and M L DePamphilis
July 1978, The Journal of biological chemistry,
M F Charette, and D T Weaver, and M L DePamphilis
July 1979, The Journal of biological chemistry,
M F Charette, and D T Weaver, and M L DePamphilis
December 1984, The Journal of biological chemistry,
M F Charette, and D T Weaver, and M L DePamphilis
August 1984, Journal of molecular biology,
Copied contents to your clipboard!