Complete nucleotide sequence of the Escherichia coli recC gene and of the thyA-recC intergenic region. 1986

P W Finch, and R E Wilson, and K Brown, and I D Hickson, and A E Tomkinson, and P T Emmerson

The nucleotide sequence of a 6,000 bp region of the E. coli chromosome that includes the 3' end of the coding region for the thyA gene and the entire recC gene has been determined. The proposed coding region for the RecC protein is 3369 nucleotides long, which would encode a polypeptide consisting of 1122 amino acids with a calculated molecular mass of 129 kDa. Mung bean nuclease mapping of a recC specific transcript produced in vivo indicates that transcription of recC is initiated 80 bp upstream of the translational start point. A weak promoter sequence situated 5' to the transcription initiation point has been identified. In the 1953 bp thyA-recC intergenic region there are three open reading frames that would code for polypeptides of molecular mass 30 kDa, 13.5 kDa and 12 kDa, respectively. Although the first and third of these open reading frames are preceded by possible ribosome binding sites, no obvious promoter sequences could be identified. Moreover, transcripts for these reading frames could not be detected.

UI MeSH Term Description Entries
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005090 Exodeoxyribonucleases A family of enzymes that catalyze the exonucleolytic cleavage of DNA. It includes members of the class EC 3.1.11 that produce 5'-phosphomonoesters as cleavage products. DNA Exonucleases,Exonucleases, DNA
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

P W Finch, and R E Wilson, and K Brown, and I D Hickson, and A E Tomkinson, and P T Emmerson
December 1987, Nucleic acids research,
P W Finch, and R E Wilson, and K Brown, and I D Hickson, and A E Tomkinson, and P T Emmerson
August 1983, Nucleic acids research,
P W Finch, and R E Wilson, and K Brown, and I D Hickson, and A E Tomkinson, and P T Emmerson
November 1986, Nucleic acids research,
P W Finch, and R E Wilson, and K Brown, and I D Hickson, and A E Tomkinson, and P T Emmerson
May 1989, Nucleic acids research,
P W Finch, and R E Wilson, and K Brown, and I D Hickson, and A E Tomkinson, and P T Emmerson
November 1982, Biochemical and biophysical research communications,
P W Finch, and R E Wilson, and K Brown, and I D Hickson, and A E Tomkinson, and P T Emmerson
April 1984, Nucleic acids research,
P W Finch, and R E Wilson, and K Brown, and I D Hickson, and A E Tomkinson, and P T Emmerson
June 1987, Nucleic acids research,
P W Finch, and R E Wilson, and K Brown, and I D Hickson, and A E Tomkinson, and P T Emmerson
December 1984, Nucleic acids research,
P W Finch, and R E Wilson, and K Brown, and I D Hickson, and A E Tomkinson, and P T Emmerson
June 1986, Molecular & general genetics : MGG,
P W Finch, and R E Wilson, and K Brown, and I D Hickson, and A E Tomkinson, and P T Emmerson
January 1979, Cold Spring Harbor symposia on quantitative biology,
Copied contents to your clipboard!