Carbon source regulation of RAS1 expression in Saccharomyces cerevisiae and the phenotypes of ras2- cells. 1986

D Breviario, and A Hinnebusch, and J Cannon, and K Tatchell, and R Dhar

Transcriptional analysis of the yeast RAS genes in different culture conditions suggests that the inability of ras2 mutants to grow in nonfermentable carbon sources results from the regulation of RAS1 mRNA expression. The amount of RAS1 mRNA is significantly repressed in cultures grown on the nonfermentable carbon sources ethanol and acetate. As a result, low RAS function should be expressed under these conditions in a ras2 mutant. This can explain the inability of ras2- cells to grow on nonfermentable carbon sources. This interpretation is supported by the finding that an extragenic suppressor of ras2- (sra6-15), which restores growth on ethanol or acetate, also leads to an increase in the amount of RAS1 mRNA under these conditions. The sra6-15 mutation does not alter the level of RAS1 mRNA in cells grown on glucose. The pattern of transcriptional regulation described for the RAS1 gene is not shared by RAS2, indicating differential control of the functionally homologous yeast RAS genes at the level of gene expression.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D002244 Carbon A nonmetallic element with atomic symbol C, atomic number 6, and atomic weight [12.0096; 12.0116]. It may occur as several different allotropes including DIAMOND; CHARCOAL; and GRAPHITE; and as SOOT from incompletely burned fuel. Carbon-12,Vitreous Carbon,Carbon 12,Carbon, Vitreous
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013489 Suppression, Genetic Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE). Suppressor Mutation,Genetic Suppression,Genetic Suppressions,Mutation, Suppressor,Mutations, Suppressor,Suppressions, Genetic,Suppressor Mutations
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

D Breviario, and A Hinnebusch, and J Cannon, and K Tatchell, and R Dhar
July 1997, The Journal of biological chemistry,
D Breviario, and A Hinnebusch, and J Cannon, and K Tatchell, and R Dhar
February 1989, Proceedings of the National Academy of Sciences of the United States of America,
D Breviario, and A Hinnebusch, and J Cannon, and K Tatchell, and R Dhar
March 1986, Proceedings of the National Academy of Sciences of the United States of America,
D Breviario, and A Hinnebusch, and J Cannon, and K Tatchell, and R Dhar
January 1993, The Italian journal of biochemistry,
D Breviario, and A Hinnebusch, and J Cannon, and K Tatchell, and R Dhar
June 1986, Genetics,
D Breviario, and A Hinnebusch, and J Cannon, and K Tatchell, and R Dhar
August 1997, Canadian journal of microbiology,
D Breviario, and A Hinnebusch, and J Cannon, and K Tatchell, and R Dhar
July 1995, Yeast (Chichester, England),
D Breviario, and A Hinnebusch, and J Cannon, and K Tatchell, and R Dhar
December 1993, Oncogene,
D Breviario, and A Hinnebusch, and J Cannon, and K Tatchell, and R Dhar
February 1999, Journal of cellular physiology,
Copied contents to your clipboard!