Specific lysis of murine cells expressing HLA molecules by allospecific human and murine H-2-restricted anti-HLA T killer lymphocytes. 1986

A Achour, and B Begue, and E Gomard, and P Paul, and B Sayagh, and A Van Pel, and J P Levy

The lysis by human and murine anti-HLA cytolytic T lymphocytes (CTL) of murine cells expressing class I HLA molecule after gene transfection has been studied using two different murine cells: LMTK- and P815-HTR-TK-. Weak but significant HLA-A11-specific lysis was found occasionally with human CTL on the HLA-A11+ L cells. On the contrary, P815-A11 or P815-A2 cells were lysed strongly and specifically by HLA-A11 or HLA-A2-specific human CTL. The T8+T4- phenotype of the effector cells was confirmed and the reaction was inhibited by anti-HLA class I monoclonal antibodies. Despite their higher sensitivity to human CTL, the P815-HLA+ cells did not express higher levels of HLA antigens than L cells, and the presence or the absence of human beta 2 microglobulin was irrelevant. Anti-human LFA-1 antibodies abrogated the lysis of P815-A11+ cells showing that the LFA-1 receptor which is apparently lacking on the L cell surface was on the contrary expressed on P815 cells. On the other hand, murine anti-HLA CTL have been prepared by immunizing mice against syngeneic HLA-A11+ L cells. They lysed very efficiently and specifically these cells, but appeared completely devoid of activity against human HLA-A11 target cells. This barrier was apparently due to the H-2 restriction of these H-2k anti-HLA murine CTL, as shown by their inability to lyse allogeneic H-2d cells expressing HLA-A11, and by the blocking of their activity by anti H-2k antibodies. By contrast, xenogeneic anti-HLA CTL obtained by immunizing murine lymphocytes against human cells lysed both human and murine HLA+ cells but they reacted with a monomorphic epitope of the HLA molecule in a nonrestricted way. These results show that human cells lyse very efficiently P815 murine cells expressing HLA class I antigens; the higher sensitivity of P815 cells compared to L cells is probably due to the presence of a LFA-1 receptor on these cells; a class I molecule of human origin can be seen as an H-2-restricted minor histocompatibility antigen in another species.

UI MeSH Term Description Entries
D007739 L Cells A cultured line of C3H mouse FIBROBLASTS that do not adhere to one another and do not express CADHERINS. Earle's Strain L Cells,L Cell Line,L Cells (Cell Line),L-Cell Line,L-Cells,L-Cells, Cell Line,L929 Cell Line,L929 Cells,NCTC Clone 929 Cells,NCTC Clone 929 of Strain L Cells,Strain L Cells,Cell Line L-Cell,Cell Line L-Cells,Cell Line, L,Cell Line, L929,Cell Lines, L,Cell, L,Cell, L (Cell Line),Cell, L929,Cell, Strain L,Cells, L,Cells, L (Cell Line),Cells, L929,Cells, Strain L,L Cell,L Cell (Cell Line),L Cell Lines,L Cell, Strain,L Cells, Cell Line,L Cells, Strain,L-Cell,L-Cell Lines,L-Cell, Cell Line,L929 Cell,Strain L Cell
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D004306 Dose-Response Relationship, Immunologic A specific immune response elicited by a specific dose of an immunologically active substance or cell in an organism, tissue, or cell. Immunologic Dose-Response Relationship,Relationship, Immunologic Dose-Response,Dose Response Relationship, Immunologic,Dose-Response Relationships, Immunologic,Immunologic Dose Response Relationship,Immunologic Dose-Response Relationships,Relationship, Immunologic Dose Response,Relationships, Immunologic Dose-Response
D006183 H-2 Antigens The major group of transplantation antigens in the mouse. H2 Antigens,Antigens, H-2,Antigens, H2,H 2 Antigens
D006680 HLA Antigens Antigens determined by leukocyte loci found on chromosome 6, the major histocompatibility loci in humans. They are polypeptides or glycoproteins found on most nucleated cells and platelets, determine tissue types for transplantation, and are associated with certain diseases. Human Leukocyte Antigen,Human Leukocyte Antigens,Leukocyte Antigens,HL-A Antigens,Antigen, Human Leukocyte,Antigens, HL-A,Antigens, HLA,Antigens, Human Leukocyte,Antigens, Leukocyte,HL A Antigens,Leukocyte Antigen, Human,Leukocyte Antigens, Human
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A Achour, and B Begue, and E Gomard, and P Paul, and B Sayagh, and A Van Pel, and J P Levy
April 2005, Nihon rinsho. Japanese journal of clinical medicine,
A Achour, and B Begue, and E Gomard, and P Paul, and B Sayagh, and A Van Pel, and J P Levy
January 1986, Nature,
A Achour, and B Begue, and E Gomard, and P Paul, and B Sayagh, and A Van Pel, and J P Levy
April 1987, Journal of immunology (Baltimore, Md. : 1950),
A Achour, and B Begue, and E Gomard, and P Paul, and B Sayagh, and A Van Pel, and J P Levy
July 1985, Journal of immunology (Baltimore, Md. : 1950),
A Achour, and B Begue, and E Gomard, and P Paul, and B Sayagh, and A Van Pel, and J P Levy
August 1992, The Journal of experimental medicine,
A Achour, and B Begue, and E Gomard, and P Paul, and B Sayagh, and A Van Pel, and J P Levy
March 1983, Journal of immunology (Baltimore, Md. : 1950),
A Achour, and B Begue, and E Gomard, and P Paul, and B Sayagh, and A Van Pel, and J P Levy
December 1996, Immunological reviews,
A Achour, and B Begue, and E Gomard, and P Paul, and B Sayagh, and A Van Pel, and J P Levy
August 2005, Blood,
A Achour, and B Begue, and E Gomard, and P Paul, and B Sayagh, and A Van Pel, and J P Levy
February 1988, Journal of immunology (Baltimore, Md. : 1950),
A Achour, and B Begue, and E Gomard, and P Paul, and B Sayagh, and A Van Pel, and J P Levy
February 1978, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!