MiR-383-5p promotes apoptosis of ovarian granulosa cells by targeting CIRP through the PI3K/AKT signaling pathway. 2022

Yunying Li, and Xiaohua Wu, and Suibing Miao, and Qinying Cao
Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, China.

To detect miR-383-5p and cold-inducible RNA binding protein (CIRBP, CIRP) expression in patients with polycystic ovary syndrome (PCOS) and explore the mechanism underlying their effect on apoptosis in ovarian granulosa cells (GCs). GCs were extracted from follicular fluid from 101 patients. MiR-383-5p and CIRP expression were assessed by quantitative real time polymerase chain reaction analysis. Correlation between them was assessed by Spearman correlation analysis. The potential of using miR-383-5p expression for discriminating PCOS and non-PCOS patients was predicted by receiver operating characteristic curve analysis. Proliferation and apoptosis of KGN cells transfected for miR-383-5p overexpression or knockdown was evaluated using cell counting kit-8 assay, flow cytometry, and western blot analysis. CIRP was identified as a direct target of miR-383-5p, and verified by dual-luciferase reporter assay. The expression level of miR-383-5p was decreased and CIRP mRNA was increased in PCOS patients. The expression of miR-383-5p was correlated negatively with body-mass index, basal luteinizing hormone and testosterone levels, luteinizing hormone/follicle-stimulating hormone ratio, and the number of retrieved and metaphase II oocytes. MiR-383-5p had sufficient potential for prediction of PCOS. There was a negative correlation between the expression of miR-383-5p and CIRP. Overexpression of miR-383-5p enhanced the apoptosis of KGN cells. CIRP reversed the effect of miR-383-5p on promotion of apoptosis. MiR-383-5p mimics could suppress the PI3K/AKT signaling pathway, which was activated by the CIRP overexpressing plasmid. MiR-383-5p promoted apoptosis of ovarian GCs through the PI3K/AKT signaling pathway by targeting CIRP.

UI MeSH Term Description Entries
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D011085 Polycystic Ovary Syndrome A complex disorder characterized by infertility, HIRSUTISM; OBESITY; and various menstrual disturbances such as OLIGOMENORRHEA; AMENORRHEA; ANOVULATION. Polycystic ovary syndrome is usually associated with bilateral enlarged ovaries studded with atretic follicles, not with cysts. The term, polycystic ovary, is misleading. Stein-Leventhal Syndrome,Polycystic Ovarian Syndrome,Polycystic Ovary Syndrome 1,Sclerocystic Ovarian Degeneration,Sclerocystic Ovaries,Sclerocystic Ovary Syndrome,Ovarian Degeneration, Sclerocystic,Ovarian Syndrome, Polycystic,Ovary Syndrome, Polycystic,Ovary, Sclerocystic,Sclerocystic Ovary,Stein Leventhal Syndrome,Syndrome, Polycystic Ovary,Syndrome, Stein-Leventhal
D005260 Female Females
D006107 Granulosa Cells Supporting cells for the developing female gamete in the OVARY. They are derived from the coelomic epithelial cells of the gonadal ridge. Granulosa cells form a single layer around the OOCYTE in the primordial ovarian follicle and advance to form a multilayered cumulus oophorus surrounding the OVUM in the Graafian follicle. The major functions of granulosa cells include the production of steroids and LH receptors (RECEPTORS, LH). Cell, Granulosa,Cells, Granulosa,Granulosa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016601 RNA-Binding Proteins Proteins that bind to RNA molecules. Included here are RIBONUCLEOPROTEINS and other proteins whose function is to bind specifically to RNA. Double-Stranded RNA-Binding Protein,Double-Stranded RNA-Binding Proteins,ds RNA-Binding Protein,RNA-Binding Protein,ds RNA-Binding Proteins,Double Stranded RNA Binding Protein,Double Stranded RNA Binding Proteins,Protein, Double-Stranded RNA-Binding,Protein, ds RNA-Binding,RNA Binding Protein,RNA Binding Proteins,RNA-Binding Protein, Double-Stranded,RNA-Binding Protein, ds,RNA-Binding Proteins, Double-Stranded,ds RNA Binding Protein
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D051057 Proto-Oncogene Proteins c-akt Protein-serine-threonine kinases that contain PLECKSTRIN HOMOLOGY DOMAINS and are activated by PHOSPHORYLATION in response to GROWTH FACTORS or INSULIN. They play a major role in cell metabolism, growth, and survival as a core component of SIGNAL TRANSDUCTION. Three isoforms have been described in mammalian cells. akt Proto-Oncogene Protein,c-akt Protein,AKT1 Protein Kinase,AKT2 Protein Kinase,AKT3 Protein Kinase,Akt-alpha Protein,Akt-beta Protein,Akt-gamma Protein,Protein Kinase B,Protein Kinase B alpha,Protein Kinase B beta,Protein Kinase B gamma,Protein-Serine-Threonine Kinase (Rac),Proto-Oncogene Protein Akt,Proto-Oncogene Protein RAC,Proto-Oncogene Proteins c-akt1,Proto-Oncogene Proteins c-akt2,Proto-Oncogene Proteins c-akt3,RAC-PK Protein,Rac Protein Kinase,Rac-PK alpha Protein,Rac-PK beta Protein,Related to A and C-Protein,c-akt Proto-Oncogene Protein,Akt alpha Protein,Akt beta Protein,Akt gamma Protein,Akt, Proto-Oncogene Protein,Protein, akt Proto-Oncogene,Protein, c-akt Proto-Oncogene,Proteins c-akt1, Proto-Oncogene,Proteins c-akt2, Proto-Oncogene,Proteins c-akt3, Proto-Oncogene,Proto Oncogene Protein Akt,Proto Oncogene Protein RAC,Proto Oncogene Proteins c akt,Proto Oncogene Proteins c akt1,Proto Oncogene Proteins c akt2,Proto Oncogene Proteins c akt3,Proto-Oncogene Protein, akt,Proto-Oncogene Protein, c-akt,RAC PK Protein,RAC, Proto-Oncogene Protein,Rac PK alpha Protein,Rac PK beta Protein,Related to A and C Protein,akt Proto Oncogene Protein,alpha Protein, Rac-PK,c akt Proto Oncogene Protein,c-akt, Proto-Oncogene Proteins,c-akt1, Proto-Oncogene Proteins,c-akt2, Proto-Oncogene Proteins,c-akt3, Proto-Oncogene Proteins

Related Publications

Yunying Li, and Xiaohua Wu, and Suibing Miao, and Qinying Cao
February 2023, Poultry science,
Yunying Li, and Xiaohua Wu, and Suibing Miao, and Qinying Cao
October 2020, European review for medical and pharmacological sciences,
Yunying Li, and Xiaohua Wu, and Suibing Miao, and Qinying Cao
December 2020, European review for medical and pharmacological sciences,
Yunying Li, and Xiaohua Wu, and Suibing Miao, and Qinying Cao
February 2022, Biochemical genetics,
Yunying Li, and Xiaohua Wu, and Suibing Miao, and Qinying Cao
July 2023, Journal of ethnopharmacology,
Yunying Li, and Xiaohua Wu, and Suibing Miao, and Qinying Cao
January 2023, Cancer biomarkers : section A of Disease markers,
Yunying Li, and Xiaohua Wu, and Suibing Miao, and Qinying Cao
July 2016, Experimental cell research,
Yunying Li, and Xiaohua Wu, and Suibing Miao, and Qinying Cao
June 2021, Animal bioscience,
Yunying Li, and Xiaohua Wu, and Suibing Miao, and Qinying Cao
January 2018, Journal of receptor and signal transduction research,
Yunying Li, and Xiaohua Wu, and Suibing Miao, and Qinying Cao
September 2019, European review for medical and pharmacological sciences,
Copied contents to your clipboard!