Altered 40 S ribosomal subunits in omnipotent suppressors of yeast. 1986

D C Eustice, and L P Wakem, and J M Wilhelm, and F Sherman

The five suppressors SUP35, SUP43, SUP44, SUP45 and SUP46, each mapping at a different chromosomal locus in the yeast Saccharomyces cerevisiae, suppress a wide range of mutations, including representatives of all three types of nonsense mutations, UAA, UAG and UGA. We have demonstrated that ribosomes from the four suppressors SUP35, SUP44, SUP45 and SUP46 translate polyuridylate templates in vitro with higher errors than ribosomes from the normal stain, and that this misreading is substantially enhanced by the antibiotic paromomycin. Furthermore, ribosomal subunit mixing experiments established that the 40 S ribosomal subunit, and this subunit only, is responsible for the higher levels of misreading. Thus, the gene products of SUP35, SUP44, SUP45 and SUP46 are components of the 40 S subunit or are enzymes that modify the subunit. In addition, a protein from the 40 S subunit of the SUP35 suppressor has an altered electrophoretic mobility; this protein is distinct from the altered protein previously uncovered in the 40 S subunit of the SUP46 suppressor. In contrast to the ribosomes from the four suppressors SUP35, SUP44, SUP45 and SUP46, the ribosomes from the SUP43 suppressor do not significantly misread polyuridylate templates in vitro, suggesting that this locus may not encode a ribosomal component or that the misreading is highly specific.

UI MeSH Term Description Entries
D010303 Paromomycin An aminoglycoside antibacterial and antiprotozoal agent produced by species of STREPTOMYCES. Aminosidine,Catenulin,Estomycin,Hydroxymycin,Neomycin E,Gabbromycin,Humatin,Paramomycin,Paromomycin I,Paromomycin Phosphate,Paromomycin Sulfate,Paromomycin Sulfate (1:1),Paromomycin Sulfate (2:5),Paromomycin, beta-D-Glucopyranosyl-Isomer,Paromomycin, beta D Glucopyranosyl Isomer,beta-D-Glucopyranosyl-Isomer Paromomycin
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D004586 Electrophoresis An electrochemical process in which macromolecules or colloidal particles with a net electric charge migrate in a solution under the influence of an electric current. Electrophoreses
D005815 Genetic Code The meaning ascribed to the BASE SEQUENCE with respect to how it is translated into AMINO ACID SEQUENCE. The start, stop, and order of amino acids of a protein is specified by consecutive triplets of nucleotides called codons (CODON). Code, Genetic,Codes, Genetic,Genetic Codes
D012269 Ribosomal Proteins Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits. Proteins, Ribosomal,Ribosomal Protein,Protein, Ribosomal
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013489 Suppression, Genetic Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE). Suppressor Mutation,Genetic Suppression,Genetic Suppressions,Mutation, Suppressor,Mutations, Suppressor,Suppressions, Genetic,Suppressor Mutations
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

D C Eustice, and L P Wakem, and J M Wilhelm, and F Sherman
February 1997, The Journal of biological chemistry,
D C Eustice, and L P Wakem, and J M Wilhelm, and F Sherman
March 1990, Genetics,
D C Eustice, and L P Wakem, and J M Wilhelm, and F Sherman
May 1980, Genetics,
D C Eustice, and L P Wakem, and J M Wilhelm, and F Sherman
May 1976, Biochimica et biophysica acta,
D C Eustice, and L P Wakem, and J M Wilhelm, and F Sherman
February 1978, European journal of biochemistry,
D C Eustice, and L P Wakem, and J M Wilhelm, and F Sherman
April 1981, Journal of molecular biology,
D C Eustice, and L P Wakem, and J M Wilhelm, and F Sherman
March 1990, Genetics,
D C Eustice, and L P Wakem, and J M Wilhelm, and F Sherman
January 1979, Methods in enzymology,
D C Eustice, and L P Wakem, and J M Wilhelm, and F Sherman
May 1978, FEBS letters,
D C Eustice, and L P Wakem, and J M Wilhelm, and F Sherman
September 1978, European journal of biochemistry,
Copied contents to your clipboard!