Efficacy of flunixin meglumine for the treatment of endotoxin-induced bovine mastitis. 1986

K L Anderson, and A R Smith, and R D Shanks, and L E Davis, and B K Gustafsson

The clinical effect of flunixin meglumine administration was determined in cows with acute mastitis induced by intramammary administration of endotoxin. In 12 lactating cows, 10 micrograms of Escherichia coli 026:B6 endotoxin were administered via a teat cannula into the teat cistern of single randomly selected rear quarters. Cows were challenge exposed as pairs. One cow in each pair was administered parenteral flunixin meglumine (6 cows) and 1 cow per pair was administered saline solution (6 cows). Multiple doses (7) of 1.1 mg of flunixin meglumine/kg of body weight or saline solution were administered at 8-hour intervals beginning 2 hours after endotoxin. Cow and quarter clinical signs as well as milk somatic cell concentrations, bovine serum albumin, electrical conductivity, and milk production were determined before and for 14 days after endotoxin inoculation. Intramammary endotoxin produced signs characteristic of acute coliform mastitis. Quarter and systemic abnormalities occurred and milk production was reduced by approximately 50% at 12 hours after endotoxin. Flunixin meglumine therapy significantly (P less than or equal to 0.05) reduced rectal temperatures and quarter signs of inflammation and improved clinically graded depression when compared with these signs in saline solution-treated controls. Milk production and laboratory indicators of inflammation in milk were not significantly (P greater than 0.05) different for flunixin meglumine vs saline solution controls. The clinical response observed was consistent with the antipyretic, analgesic, and anti-inflammatory properties of flunixin meglumine.

UI MeSH Term Description Entries
D008414 Mastitis, Bovine INFLAMMATION of the UDDER in cows. Bovine Mastitides,Bovine Mastitis,Mastitides, Bovine
D009539 Nicotinic Acids 2-, 3-, or 4-Pyridinecarboxylic acids. Pyridine derivatives substituted with a carboxy group at the 2-, 3-, or 4-position. The 3-carboxy derivative (NIACIN) is active as a vitamin. Acids, Nicotinic
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003002 Clonixin Anti-inflammatory analgesic. CBA-93626,Sch-10304,CBA 93626,CBA93626,Sch 10304,Sch10304
D004731 Endotoxins Toxins closely associated with the living cytoplasm or cell wall of certain microorganisms, which do not readily diffuse into the culture medium, but are released upon lysis of the cells. Endotoxin
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K L Anderson, and A R Smith, and R D Shanks, and L E Davis, and B K Gustafsson
August 2002, Journal of veterinary pharmacology and therapeutics,
K L Anderson, and A R Smith, and R D Shanks, and L E Davis, and B K Gustafsson
January 1987, Veterinary research communications,
K L Anderson, and A R Smith, and R D Shanks, and L E Davis, and B K Gustafsson
September 1981, American journal of veterinary research,
K L Anderson, and A R Smith, and R D Shanks, and L E Davis, and B K Gustafsson
December 2000, Journal of veterinary pharmacology and therapeutics,
K L Anderson, and A R Smith, and R D Shanks, and L E Davis, and B K Gustafsson
October 2004, Journal of veterinary pharmacology and therapeutics,
K L Anderson, and A R Smith, and R D Shanks, and L E Davis, and B K Gustafsson
January 1988, Acta veterinaria Scandinavica,
K L Anderson, and A R Smith, and R D Shanks, and L E Davis, and B K Gustafsson
August 1995, Zentralblatt fur Veterinarmedizin. Reihe A,
K L Anderson, and A R Smith, and R D Shanks, and L E Davis, and B K Gustafsson
March 1985, American journal of veterinary research,
K L Anderson, and A R Smith, and R D Shanks, and L E Davis, and B K Gustafsson
January 1990, Acta veterinaria Scandinavica,
K L Anderson, and A R Smith, and R D Shanks, and L E Davis, and B K Gustafsson
March 1989, The Veterinary record,
Copied contents to your clipboard!