Recovery and diversity of heterotrophic bacteria from chlorinated drinking waters. 1986

J S Maki, and S J LaCroix, and B S Hopkins, and J T Staley

Heterotrophic bacteria were enumerated from the Seattle drinking water catchment basins and distribution system. The highest bacterial recoveries were obtained by using a very dilute medium containing 0.01% peptone as the primary carbon source. Other factors favoring high recovery were the use of incubation temperatures close to that of the habitat and an extended incubation (28 days or longer provided the highest counts). Total bacterial counts were determined by using acridine orange staining. With one exception, all acridine orange counts in chlorinated samples were lower than those in prechlorinated reservoir water, indicating that chlorination often reduces the number of acridine orange-detectable bacteria. Source waters had higher diversity index values than did samples examined following chlorination and storage in reservoirs. Shannon index values based upon colony morphology were in excess of 4.0 for prechlorinated source waters, whereas the values for final chlorinated tap waters were lower than 2.9. It is not known whether the reduction in diversity was due solely to chlorination or in part to other factors in the water treatment and distribution system. Based upon the results of this investigation, we provide a list of recommendations for changes in the procedures used for the enumeration of heterotrophic bacteria from drinking waters.

UI MeSH Term Description Entries
D010461 Peptones Derived proteins or mixtures of cleavage products produced by the partial hydrolysis of a native protein either by an acid or by an enzyme. Peptones are readily soluble in water, and are not precipitable by heat, by alkalis, or by saturation with ammonium sulfate. (Dorland, 28th ed) Peptone
D002713 Chlorine An element with atomic symbol Cl, atomic number 17, and atomic weight 35, and member of the halogen family. Chlorine Gas,Chlorine-35,Cl2 Gas,Chlorine 35,Gas, Chlorine,Gas, Cl2
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000165 Acridine Orange A cationic cytochemical stain specific for cell nuclei, especially DNA. It is used as a supravital stain and in fluorescence cytochemistry. It may cause mutations in microorganisms. Tetramethyl Acridine Diamine,3,6-Bis(dimethylamino)acridine,Acridine Orange Base,Basic Orange 3RN,C.I. 46005,C.I. Basic Orange 14,Euchrysine,N,N,N',N'-Tetramethyl-3,6-Acridinediamine Hydrochloride,Rhoduline Orange,Acridine Diamine, Tetramethyl,Base, Acridine Orange,Diamine, Tetramethyl Acridine,Orange 3RN, Basic,Orange Base, Acridine,Orange, Acridine,Orange, Rhoduline
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001431 Bacteriological Techniques Techniques used in studying bacteria. Bacteriologic Technic,Bacteriologic Technics,Bacteriologic Techniques,Bacteriological Technique,Technic, Bacteriological,Technics, Bacteriological,Technique, Bacteriological,Techniques, Bacteriological,Bacteriologic Technique,Bacteriological Technic,Bacteriological Technics,Technic, Bacteriologic,Technics, Bacteriologic,Technique, Bacteriologic,Techniques, Bacteriologic
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D014871 Water Microbiology The presence of bacteria, viruses, and fungi in water. This term is not restricted to pathogenic organisms. Microbiology, Water
D014881 Water Supply Means or process of supplying water (as for a community) usually including reservoirs, tunnels, and pipelines and often the watershed from which the water is ultimately drawn. (Webster, 3d ed) Supplies, Water,Supply, Water,Water Supplies

Related Publications

J S Maki, and S J LaCroix, and B S Hopkins, and J T Staley
November 1985, Applied and environmental microbiology,
J S Maki, and S J LaCroix, and B S Hopkins, and J T Staley
April 1941, American journal of public health and the nation's health,
J S Maki, and S J LaCroix, and B S Hopkins, and J T Staley
October 2014, Environmental microbiology,
J S Maki, and S J LaCroix, and B S Hopkins, and J T Staley
January 1990, IARC scientific publications,
J S Maki, and S J LaCroix, and B S Hopkins, and J T Staley
May 1981, Applied and environmental microbiology,
J S Maki, and S J LaCroix, and B S Hopkins, and J T Staley
December 2016, Journal of water and health,
J S Maki, and S J LaCroix, and B S Hopkins, and J T Staley
July 2020, BMC microbiology,
J S Maki, and S J LaCroix, and B S Hopkins, and J T Staley
February 2009, The Journal of general and applied microbiology,
J S Maki, and S J LaCroix, and B S Hopkins, and J T Staley
July 2015, Microorganisms,
J S Maki, and S J LaCroix, and B S Hopkins, and J T Staley
February 1978, Applied and environmental microbiology,
Copied contents to your clipboard!