Drug disposition in obese humans. An update. 1986

D R Abernethy, and D J Greenblatt

Drug disposition for many drugs has now been studied in obese individuals and some general conclusions can be drawn. Absorption of drugs evaluated to date is unchanged due to obesity. Apparent volume of distribution is greatly increased for some drugs including most benzodiazepines, thiopentone, phenytoin, verapamil and lignocaine (lidocaine). Modest increases in volume of distribution have been noted for methylxanthines, aminoglycosides, vancomycin, ibuprofen, prednisolone and heparin. Distribution of digoxin, cimetidine and procainamide is unchanged in obesity. The mechanism for the increased distribution of some drugs and unchanged distribution of others in obesity is unclear at present. It may be in part due to the lipophilic character of the drug molecule; however, other complex and as yet poorly understood factors contribute to the variability in drug distribution in obese patients. Protein binding of drugs bound to albumin is not dramatically changed in obesity. In contrast, some studies report that drugs bound to alpha 1-acid glycoprotein (AAG) may have increased binding that is related to increased serum AAG concentration; however, this is not a consistent finding. Oxidative drug biotransformation is minimally changed in obesity with the exceptions of ibuprofen and prednisolone, for which clearance increases as a highly correlated function of total bodyweight. Drug conjugation uniformly increases as a function of bodyweight in obesity, with paracetamol (acetaminophen), lorazepam and oxazepam having been studied. Drug acetylation may be unchanged in obesity, with only procainamide evaluated at this time. High clearance drugs, including lignocaine, verapamil and midazolam, have no change in clearance in obese individuals compared to normal bodyweight controls. Renal clearance of drugs is little changed for some drugs evaluated (digoxin, cimetidine), and increased for others (aminoglycosides, unmetabolised procainamide). Characterisation of appropriate animal models of obesity is underway to clarify the mechanisms for these in vivo pharmacokinetic observations in obese man. Two models, the Zucker obese and the obese cafeteria-fed male Sprague-Dawley rat, have provided preliminary physiological pharmacokinetic data with evaluations of theophylline, phenobarbitone and verapamil.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D009765 Obesity A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
D010672 Phenytoin An anticonvulsant that is used to treat a wide variety of seizures. It is also an anti-arrhythmic and a muscle relaxant. The mechanism of therapeutic action is not clear, although several cellular actions have been described including effects on ion channels, active transport, and general membrane stabilization. The mechanism of its muscle relaxant effect appears to involve a reduction in the sensitivity of muscle spindles to stretch. Phenytoin has been proposed for several other therapeutic uses, but its use has been limited by its many adverse effects and interactions with other drugs. Diphenylhydantoin,Fenitoin,Phenhydan,5,5-Diphenylhydantoin,5,5-diphenylimidazolidine-2,4-dione,Antisacer,Difenin,Dihydan,Dilantin,Epamin,Epanutin,Hydantol,Phenytoin Sodium,Sodium Diphenylhydantoinate,Diphenylhydantoinate, Sodium
D011239 Prednisolone A glucocorticoid with the general properties of the corticosteroids. It is the drug of choice for all conditions in which routine systemic corticosteroid therapy is indicated, except adrenal deficiency states. Di-Adreson-F,Predate,Predonine,Di Adreson F,DiAdresonF
D002927 Cimetidine A histamine congener, it competitively inhibits HISTAMINE binding to HISTAMINE H2 RECEPTORS. Cimetidine has a range of pharmacological actions. It inhibits GASTRIC ACID secretion, as well as PEPSIN and GASTRIN output. Altramet,Biomet,Biomet400,Cimetidine HCl,Cimetidine Hydrochloride,Eureceptor,Histodil,N-Cyano-N'-methyl-N''-(2-(((5-methyl-1H-imidazol-4-yl)methyl)thio)ethyl)guanidine,SK&F-92334,SKF-92334,Tagamet,HCl, Cimetidine,Hydrochloride, Cimetidine,SK&F 92334,SK&F92334,SKF 92334,SKF92334
D004077 Digoxin A cardiotonic glycoside obtained mainly from Digitalis lanata; it consists of three sugars and the aglycone DIGOXIGENIN. Digoxin has positive inotropic and negative chronotropic activity. It is used to control ventricular rate in ATRIAL FIBRILLATION and in the management of congestive heart failure with atrial fibrillation. Its use in congestive heart failure and sinus rhythm is less certain. The margin between toxic and therapeutic doses is small. (From Martindale, The Extra Pharmacopoeia, 30th ed, p666) Digacin,Digitek,Digoregen,Digoxina Boehringer,Digoxine Nativelle,Dilanacin,Hemigoxine Nativelle,Lanacordin,Lanicor,Lanoxicaps,Lanoxin,Lanoxin-PG,Lenoxin,Mapluxin,Boehringer, Digoxina,Lanoxin PG,Nativelle, Digoxine,Nativelle, Hemigoxine
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004364 Pharmaceutical Preparations Drugs intended for human or veterinary use, presented in their finished dosage form. Included here are materials used in the preparation and/or formulation of the finished dosage form. Drug,Drugs,Pharmaceutical,Pharmaceutical Preparation,Pharmaceutical Product,Pharmaceutic Preparations,Pharmaceutical Products,Pharmaceuticals,Preparations, Pharmaceutical,Preparation, Pharmaceutical,Preparations, Pharmaceutic,Product, Pharmaceutical,Products, Pharmaceutical
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

D R Abernethy, and D J Greenblatt
June 1985, Pharmacological reviews,
D R Abernethy, and D J Greenblatt
June 2009, Current drug metabolism,
D R Abernethy, and D J Greenblatt
January 1986, Drug metabolism and disposition: the biological fate of chemicals,
D R Abernethy, and D J Greenblatt
November 2006, Biopharmaceutics & drug disposition,
D R Abernethy, and D J Greenblatt
February 2004, Current drug metabolism,
D R Abernethy, and D J Greenblatt
September 2016, Acta pharmaceutica Sinica. B,
D R Abernethy, and D J Greenblatt
November 2003, European journal of clinical investigation,
D R Abernethy, and D J Greenblatt
January 2017, Current pharmaceutical design,
D R Abernethy, and D J Greenblatt
January 2000, Drug metabolism and disposition: the biological fate of chemicals,
D R Abernethy, and D J Greenblatt
January 2004, Methods and findings in experimental and clinical pharmacology,
Copied contents to your clipboard!