Molecular cloning and nucleotide sequence of the Corynebacterium glutamicum pheA gene. 1986

M T Follettie, and A J Sinskey

The pheA gene of Corynebacterium glutamicum encoding prephenate dehydratase was isolated from a gene bank constructed in C. glutamicum. The specific activity of prephenate dehydratase was increased six-fold in strains harboring the cloned gene. Genetic and structural evidence is presented which indicates that prephenate dehydratase and chorismate mutase were catalyzed by separate enzymes in this species. The C. glutamicum pheA gene, subcloned in both orientations with respect to the Escherichia coli vector pUC8, was able to complement an E. coli pheA auxotroph. The nucleotide sequence of the C. glutamicum pheA gene predicts a 315-residue protein product with a molecular weight of 33,740. The deduced protein product demonstrated sequence homology to the C-terminal two-thirds of the bifunctional E. coli enzyme chorismate mutase-P-prephenate dehydratase.

UI MeSH Term Description Entries
D011302 Prephenate Dehydratase An enzyme that catalyzes the conversion of prephenate to phenylpyruvate with the elimination of water and carbon dioxide. In the enteric bacteria this enzyme also possesses chorismate mutase activity, thereby catalyzing the first two steps in the biosynthesis of phenylalanine. EC 4.2.1.51. Chorismate Mutase-Prephenate Dehydratase,Prephenate Hydro-lyase,Chorismate Mutase Prephenate Dehydratase,Dehydratase, Chorismate Mutase-Prephenate,Dehydratase, Prephenate,Hydro-lyase, Prephenate,Mutase-Prephenate Dehydratase, Chorismate,Prephenate Hydro lyase
D002826 Chorismate Mutase An isomerase that catalyzes the conversion of chorismic acid to prephenic acid. EC 5.4.99.5. Chorismate Pyruvatemutase,Mutase, Chorismate,Pyruvatemutase, Chorismate
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D003352 Corynebacterium A genus of asporogenous bacteria that is widely distributed in nature. Its organisms appear as straight to slightly curved rods and are known to be human and animal parasites and pathogens.
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests

Related Publications

M T Follettie, and A J Sinskey
December 1990, Nucleic acids research,
M T Follettie, and A J Sinskey
November 1990, Nucleic acids research,
M T Follettie, and A J Sinskey
January 1994, DNA sequence : the journal of DNA sequencing and mapping,
M T Follettie, and A J Sinskey
October 1998, Biochemistry and molecular biology international,
M T Follettie, and A J Sinskey
June 1993, Applied microbiology and biotechnology,
Copied contents to your clipboard!