The insulin receptor and calmodulin. Calmodulin enhances insulin-mediated receptor kinase activity and insulin stimulates phosphorylation of calmodulin. 1986

C B Graves, and R D Gale, and J P Laurino, and J M McDonald

Despite intensive research efforts, the functional role and regulation of the insulin receptor kinase remain enigmatic. In this investigation, we demonstrate that calmodulin enhances insulin-stimulated phosphorylation of the beta subunit of the insulin receptor and histone H2b and that insulin also stimulates phosphorylation of calmodulin. Using wheat germ lectin-enriched insulin receptor preparations obtained from rat adipocyte plasma membranes, calmodulin stimulated the rate and increased the amount of 32P incorporated predominantly into tyrosine residues of the beta subunit of the receptor when assayed in the presence of insulin. The stimulatory effect of calmodulin was both dose-dependent and saturable with half-maximal and maximal phosphorylation of the beta subunit occurring at 0.4 and 2.0 microM calmodulin, respectively. Ca2+ enhanced the ability of calmodulin to stimulate insulin-mediated phosphorylation of the beta subunit with an apparent K0.5 of approximately 0.6 microM. Calmodulin also induced an approximately 2-fold increase in both the rate and amount of insulin-mediated incorporation of 32P into histone H2b. The stimulatory effect of calmodulin was only observed in the presence of insulin and was concentration-dependent (K0.5 approximately 3.0 microM calmodulin), saturable (at 5 microM calmodulin), and Ca2+-dependent (K0.5 = 0.2 microM free Ca2+). Insulin also induced phosphorylation of a 17-kDa protein. On the basis of its molecular weight and purification via immunoadsorption with protein A-Sepharose-bound anti-calmodulin IgG, this phosphoprotein was identified as a phosphorylated form of calmodulin. Phosphorylation of calmodulin was only observed in the presence of insulin and was both Ca2+- and insulin concentration-dependent with half-maximal effects observed at 0.1 microM free Ca2+ and 350 microunits/ml insulin. Collectively, these results support the hypothesis that Ca2+ and calmodulin participate in the molecular mechanism whereby binding of insulin to its receptor is coupled to changes in cellular metabolism.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D010761 Phosphorus Radioisotopes Unstable isotopes of phosphorus that decay or disintegrate emitting radiation. P atoms with atomic weights 28-34 except 31 are radioactive phosphorus isotopes. Radioisotopes, Phosphorus
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes

Related Publications

C B Graves, and R D Gale, and J P Laurino, and J M McDonald
October 1988, Endocrinology,
C B Graves, and R D Gale, and J P Laurino, and J M McDonald
September 2005, Molecular endocrinology (Baltimore, Md.),
C B Graves, and R D Gale, and J P Laurino, and J M McDonald
August 1987, The Journal of biological chemistry,
C B Graves, and R D Gale, and J P Laurino, and J M McDonald
August 1988, Archives of biochemistry and biophysics,
C B Graves, and R D Gale, and J P Laurino, and J M McDonald
September 2004, Journal of pineal research,
C B Graves, and R D Gale, and J P Laurino, and J M McDonald
February 1988, The Biochemical journal,
C B Graves, and R D Gale, and J P Laurino, and J M McDonald
November 1989, The Biochemical journal,
C B Graves, and R D Gale, and J P Laurino, and J M McDonald
July 1987, The Journal of biological chemistry,
C B Graves, and R D Gale, and J P Laurino, and J M McDonald
July 2009, Cell cycle (Georgetown, Tex.),
Copied contents to your clipboard!