Widening the spectrum of spinocerebellar ataxia autosomal recessive type 10 (SCAR10). 2022

Birna Ásbjörnsdóttir, and Otto Mølby Henriksen, and Suzanne Lindquist, and Lisbeth Birk Møller, and Annette Sidaros, and Jørgen Erik Nielsen
Neurogenetics Clinic & Research Lab, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark birna.asbjoernsdottir.01@regionh.dk.

Biallelic pathogenic variants in the ANO10 gene cause spinocerebellar ataxia recessive type 10. We report two patients, both compound heterozygous for ANO10 variants, including two novel variants. Both patients had onset of cerebellar ataxia in adulthood with slow progression and presented corticospinal tract signs, eye movement abnormalities and cognitive executive impairment. One of them had temporal lobe epilepsy and she also carried a heterozygous variant in CACNB4, a potential risk gene for epilepsy. Both patients had pronounced cerebellar atrophy on cerebral magnetic resonance imaging (MRI) and reduced metabolic activity in cerebellum as well as in the frontal lobes on 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography ((18F)FDG PET) scans. We provide comprehensive clinical, radiological and genetic data on two patients carrying likely pathogenic ANO10 gene variants. Furthermore, we provide evidence for a cerebellar as well as a frontal involvement on brain (18F)FDG PET scans which has not previously been reported.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D002524 Cerebellar Ataxia Incoordination of voluntary movements that occur as a manifestation of CEREBELLAR DISEASES. Characteristic features include a tendency for limb movements to overshoot or undershoot a target (dysmetria), a tremor that occurs during attempted movements (intention TREMOR), impaired force and rhythm of diadochokinesis (rapidly alternating movements), and GAIT ATAXIA. (From Adams et al., Principles of Neurology, 6th ed, p90) Adiadochokinesis,Ataxia, Cerebellar,Cerebellar Dysmetria,Dysmetria,Cerebellar Hemiataxia,Cerebellar Incoordination,Hypermetria,Adiadochokineses,Ataxias, Cerebellar,Cerebellar Ataxias,Cerebellar Dysmetrias,Cerebellar Hemiataxias,Cerebellar Incoordinations,Dysmetria, Cerebellar,Dysmetrias,Dysmetrias, Cerebellar,Hemiataxia, Cerebellar,Hemiataxias, Cerebellar,Hypermetrias,Incoordination, Cerebellar,Incoordinations, Cerebellar
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D014057 Tomography, X-Ray Computed Tomography using x-ray transmission and a computer algorithm to reconstruct the image. CAT Scan, X-Ray,CT Scan, X-Ray,Cine-CT,Computerized Tomography, X-Ray,Electron Beam Computed Tomography,Tomodensitometry,Tomography, Transmission Computed,X-Ray Tomography, Computed,CAT Scan, X Ray,CT X Ray,Computed Tomography, X-Ray,Computed X Ray Tomography,Computerized Tomography, X Ray,Electron Beam Tomography,Tomography, X Ray Computed,Tomography, X-Ray Computer Assisted,Tomography, X-Ray Computerized,Tomography, X-Ray Computerized Axial,Tomography, Xray Computed,X Ray Computerized Tomography,X Ray Tomography, Computed,X-Ray Computer Assisted Tomography,X-Ray Computerized Axial Tomography,Beam Tomography, Electron,CAT Scans, X-Ray,CT Scan, X Ray,CT Scans, X-Ray,CT X Rays,Cine CT,Computed Tomography, Transmission,Computed Tomography, X Ray,Computed Tomography, Xray,Computed X-Ray Tomography,Scan, X-Ray CAT,Scan, X-Ray CT,Scans, X-Ray CAT,Scans, X-Ray CT,Tomographies, Computed X-Ray,Tomography, Computed X-Ray,Tomography, Electron Beam,Tomography, X Ray Computer Assisted,Tomography, X Ray Computerized,Tomography, X Ray Computerized Axial,Transmission Computed Tomography,X Ray Computer Assisted Tomography,X Ray Computerized Axial Tomography,X Ray, CT,X Rays, CT,X-Ray CAT Scan,X-Ray CAT Scans,X-Ray CT Scan,X-Ray CT Scans,X-Ray Computed Tomography,X-Ray Computerized Tomography,Xray Computed Tomography
D042622 DNA Repeat Expansion An increase number of repeats of a genomic, tandemly repeated DNA sequence from one generation to the next. Expanded DNA Repeats,DNA Repeat Expansions,DNA Repeat, Expanded,DNA Repeats, Expanded,Expanded DNA Repeat,Expansion, DNA Repeat,Expansions, DNA Repeat,Repeat Expansion, DNA,Repeat Expansions, DNA,Repeat, Expanded DNA,Repeats, Expanded DNA
D020754 Spinocerebellar Ataxias A group of predominately late-onset, cerebellar ataxias which have been divided into multiple subtypes based on clinical features and genetic mapping. Progressive ataxia is a central feature of these conditions, and in certain subtypes POLYNEUROPATHY; DYSARTHRIA; visual loss; and other disorders may develop. (From Joynt, Clinical Neurology, 1997, Ch65, pp 12-17; J Neuropathol Exp Neurol 1998 Jun;57(6):531-43) Spinocerebellar Ataxia Type 1,Spinocerebellar Ataxia Type 2,Spinocerebellar Ataxia Type 4,Spinocerebellar Ataxia Type 5,Spinocerebellar Ataxia Type 6,Spinocerebellar Ataxia Type 7,Spinocerebellar Atrophies,Autosomal Dominant Cerebellar Ataxia, Type II,Cerebellar Degeneration with Slow Eye Movements,Cerebelloparenchymal Disorder I,Dominantly-Inherited Spinocerebellar Ataxias,Menzel Type OPCA,OPCA with Macular Degeneration and External Ophthalmoplegia,OPCA with Retinal Degeneration,Olivopontocerebellar Atrophy 2,Olivopontocerebellar Atrophy I,Olivopontocerebellar Atrophy II,Olivopontocerebellar Atrophy III,Olivopontocerebellar Atrophy IV,Olivopontocerebellar Atrophy, Holguin Type,SCA1,Schut-Haymaker Type OPCA,Spinocerebellar Ataxia 1,Spinocerebellar Ataxia 2,Spinocerebellar Ataxia 4,Spinocerebellar Ataxia 5,Spinocerebellar Ataxia 6,Spinocerebellar Ataxia 7,Spinocerebellar Ataxia with Slow Eye Movements,Spinocerebellar Ataxia, Autosomal Dominant, with Sensory Axonal Neuropathy,Spinocerebellar Ataxia, Cuban Type,Spinocerebellar Ataxia-1,Spinocerebellar Ataxia-2,Spinocerebellar Ataxia-4,Spinocerebellar Ataxia-5,Spinocerebellar Ataxia-6,Spinocerebellar Ataxia-7,Spinocerebellar Ataxias, Dominantly-Inherited,Spinocerebellar Atrophy 2,Spinocerebellar Atrophy I,Spinocerebellar Atrophy II,Spinocerebellar Degeneration with Slow Eye Movements,Type 1 Spinocerebellar Ataxia,Type 2 Spinocerebellar Ataxia,Type 4 Spinocerebellar Ataxia,Type 5 Spinocerebellar Ataxia,Type 6 Spinocerebellar Ataxia,Type 7 Spinocerebellar Ataxia,Wadia Swami Syndrome,Wadia-Swami Syndrome,Ataxia 1, Spinocerebellar,Ataxia 2, Spinocerebellar,Ataxia 4, Spinocerebellar,Ataxia 5, Spinocerebellar,Ataxia 6, Spinocerebellar,Ataxia 7, Spinocerebellar,Ataxia, Dominantly-Inherited Spinocerebellar,Ataxia, Spinocerebellar,Ataxias, Dominantly-Inherited Spinocerebellar,Ataxias, Spinocerebellar,Atrophies, Spinocerebellar,Atrophy 2, Olivopontocerebellar,Atrophy 2, Spinocerebellar,Atrophy 2s, Olivopontocerebellar,Atrophy 2s, Spinocerebellar,Atrophy I, Olivopontocerebellar,Atrophy I, Spinocerebellar,Atrophy II, Olivopontocerebellar,Atrophy III, Olivopontocerebellar,Atrophy IIs, Spinocerebellar,Atrophy IV, Olivopontocerebellar,Atrophy IVs, Olivopontocerebellar,Atrophy, Spinocerebellar,Cerebelloparenchymal Disorder Is,Dominantly Inherited Spinocerebellar Ataxias,Dominantly-Inherited Spinocerebellar Ataxia,OPCA, Menzel Type,OPCA, Schut-Haymaker Type,Olivopontocerebellar Atrophy 2s,Olivopontocerebellar Atrophy IIIs,Olivopontocerebellar Atrophy IIs,Olivopontocerebellar Atrophy IVs,Olivopontocerebellar Atrophy Is,SCA1s,Schut Haymaker Type OPCA,Spinocerebellar Ataxia,Spinocerebellar Ataxia 1s,Spinocerebellar Ataxia 2s,Spinocerebellar Ataxia 4s,Spinocerebellar Ataxia 5s,Spinocerebellar Ataxia 6s,Spinocerebellar Ataxia 7s,Spinocerebellar Ataxia, Dominantly-Inherited,Spinocerebellar Ataxias, Dominantly Inherited,Spinocerebellar Atrophy,Spinocerebellar Atrophy 2s,Spinocerebellar Atrophy IIs,Spinocerebellar Atrophy Is,Swami Syndrome, Wadia,Syndrome, Wadia Swami,Syndrome, Wadia-Swami

Related Publications

Birna Ásbjörnsdóttir, and Otto Mølby Henriksen, and Suzanne Lindquist, and Lisbeth Birk Møller, and Annette Sidaros, and Jørgen Erik Nielsen
August 2022, Internal medicine (Tokyo, Japan),
Birna Ásbjörnsdóttir, and Otto Mølby Henriksen, and Suzanne Lindquist, and Lisbeth Birk Møller, and Annette Sidaros, and Jørgen Erik Nielsen
January 2012, Handbook of clinical neurology,
Birna Ásbjörnsdóttir, and Otto Mølby Henriksen, and Suzanne Lindquist, and Lisbeth Birk Møller, and Annette Sidaros, and Jørgen Erik Nielsen
January 2022, World journal of clinical cases,
Birna Ásbjörnsdóttir, and Otto Mølby Henriksen, and Suzanne Lindquist, and Lisbeth Birk Møller, and Annette Sidaros, and Jørgen Erik Nielsen
May 2019, Neurologia,
Birna Ásbjörnsdóttir, and Otto Mølby Henriksen, and Suzanne Lindquist, and Lisbeth Birk Møller, and Annette Sidaros, and Jørgen Erik Nielsen
April 2024, Acta neurologica Belgica,
Birna Ásbjörnsdóttir, and Otto Mølby Henriksen, and Suzanne Lindquist, and Lisbeth Birk Møller, and Annette Sidaros, and Jørgen Erik Nielsen
August 2020, Cerebellum (London, England),
Birna Ásbjörnsdóttir, and Otto Mølby Henriksen, and Suzanne Lindquist, and Lisbeth Birk Møller, and Annette Sidaros, and Jørgen Erik Nielsen
January 2012, Case reports in pediatrics,
Birna Ásbjörnsdóttir, and Otto Mølby Henriksen, and Suzanne Lindquist, and Lisbeth Birk Møller, and Annette Sidaros, and Jørgen Erik Nielsen
August 2018, Neurology. Genetics,
Birna Ásbjörnsdóttir, and Otto Mølby Henriksen, and Suzanne Lindquist, and Lisbeth Birk Møller, and Annette Sidaros, and Jørgen Erik Nielsen
July 2016, JAMA neurology,
Birna Ásbjörnsdóttir, and Otto Mølby Henriksen, and Suzanne Lindquist, and Lisbeth Birk Møller, and Annette Sidaros, and Jørgen Erik Nielsen
October 1989, Indian pediatrics,
Copied contents to your clipboard!