The effects of endotoxaemia on protein metabolism in skeletal muscle and liver of fed and fasted rats. 1986

M M Jepson, and J M Pell, and P C Bates, and D J Millward

The response of muscle and liver protein metabolism to either a single or three successive daily injections of an endotoxin (Escherichia coli lipopolysaccharide, serotype 0127 B8; 1 mg/ml, 0.3 mg/100 g body wt.) was studied in vivo in the fed rat, and at 24 and 30 h after endotoxin treatment during fasting. In the fed rats there was a catabolic response in muscle, owing to a 60-100% increase in muscle protein degradation rate, and a 52% fall in the synthesis rate. Although there was a 20% decrease in food intake, the decrease in protein synthesis was to some extent independent of this, since rats treated with endotoxin and fasted also showed a lower rate of muscle protein synthesis, which was in excess of the decrease caused by fasting alone. The mechanism of this decreased protein synthesis involved decreased translational activity, since in both fed and fasted rats there was a decreased rate of synthesis per unit of RNA. This occurred despite the fact that insulin concentrations were either maintained or increased, in the fasted rats, to those observed in fed rats. In the liver total protein mass was increased in the fed rats by 16% at 24 h, and the fractional synthesis rate at that time was increased by 35%. In rats fasted after endotoxin treatment the liver protein mass was not decreased as it was in the control fasted rats, and the fractional synthesis rate was increased by 22%. In both cases the increased synthesis rate reflected an elevated hepatic RNA concentration. The extent of this increase in hepatic protein synthesis was sufficient at one point to compensate for the fall in estimated muscle protein synthesis, so that the sum total in the two tissues was maintained.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms

Related Publications

M M Jepson, and J M Pell, and P C Bates, and D J Millward
August 1957, The Journal of clinical investigation,
M M Jepson, and J M Pell, and P C Bates, and D J Millward
September 2009, PloS one,
M M Jepson, and J M Pell, and P C Bates, and D J Millward
February 1982, Clinical physiology (Oxford, England),
M M Jepson, and J M Pell, and P C Bates, and D J Millward
January 1973, Hormone research,
M M Jepson, and J M Pell, and P C Bates, and D J Millward
January 1969, Acta chemica Scandinavica,
M M Jepson, and J M Pell, and P C Bates, and D J Millward
October 1986, The American journal of physiology,
M M Jepson, and J M Pell, and P C Bates, and D J Millward
November 1993, Journal of hepatology,
M M Jepson, and J M Pell, and P C Bates, and D J Millward
January 1995, Nutrition (Burbank, Los Angeles County, Calif.),
M M Jepson, and J M Pell, and P C Bates, and D J Millward
November 1981, Archives of biochemistry and biophysics,
M M Jepson, and J M Pell, and P C Bates, and D J Millward
January 1990, The International journal of biochemistry,
Copied contents to your clipboard!