Characterization of natural killer cells and their precursors in the murine bone marrow. 1986

O Silvennoinen, and R Renkonen, and M Hurme

We have fractionated murine bone marrow cells according to their density on bovine serum albumin (BSA) gradient and studied (a) the NK activity against YAC-1 targets, (b) the proportion of asialo GM1+ lymphocytes, (c) and the presence of large granular lymphocytes (LGL) in the different fractions (A, B, C, D). The NK activity was found mainly in the C fraction, but the proportion of asialo GM1+ cells was the same in every fraction. No LGLs were found in the bone marrow. Cells from the various fractions were also transplanted into irradiated recipients. Seven days later the highest NK activity was found in the spleens of mice injected with cells from the A + B fractions indicating that the immediate precursors for NK cells reside in the low density fractions of the BSA gradient. Mice transplanted with C or D fractions needed longer time to develop normal NK levels. The treatment of bone marrow cells before transplantation with anti-asialo GM1+ complement did not inhibit the development of NK activity, so it can be concluded that the precursor for NK is asialo GM1-.

UI MeSH Term Description Entries
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D007958 Leukocyte Count The number of WHITE BLOOD CELLS per unit volume in venous BLOOD. A differential leukocyte count measures the relative numbers of the different types of white cells. Blood Cell Count, White,Differential Leukocyte Count,Leukocyte Count, Differential,Leukocyte Number,White Blood Cell Count,Count, Differential Leukocyte,Count, Leukocyte,Counts, Differential Leukocyte,Counts, Leukocyte,Differential Leukocyte Counts,Leukocyte Counts,Leukocyte Counts, Differential,Leukocyte Numbers,Number, Leukocyte,Numbers, Leukocyte
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D005677 G(M1) Ganglioside A specific monosialoganglioside that accumulates abnormally within the nervous system due to a deficiency of GM1-b-galactosidase, resulting in GM1 gangliosidosis. GM1 Ganglioside,Monosialosyl Tetraglycosyl Ceramide,GM1a Monosialoganglioside,Ceramide, Monosialosyl Tetraglycosyl,Ganglioside, GM1,Monosialoganglioside, GM1a,Tetraglycosyl Ceramide, Monosialosyl
D006028 Glycosphingolipids Lipids containing at least one monosaccharide residue and either a sphingoid or a ceramide (CERAMIDES). They are subdivided into NEUTRAL GLYCOSPHINGOLIPIDS comprising monoglycosyl- and oligoglycosylsphingoids and monoglycosyl- and oligoglycosylceramides; and ACIDIC GLYCOSPHINGOLIPIDS which comprises sialosylglycosylsphingolipids (GANGLIOSIDES); SULFOGLYCOSPHINGOLIPIDS (formerly known as sulfatides), glycuronoglycosphingolipids, and phospho- and phosphonoglycosphingolipids. (From IUPAC's webpage) Asialoganglioside,Asialogangliosides,Glycosphingolipid,Sphingoglycolipid,Sphingoglycolipids

Related Publications

O Silvennoinen, and R Renkonen, and M Hurme
April 1986, Immunology,
O Silvennoinen, and R Renkonen, and M Hurme
January 1988, Journal of biological regulators and homeostatic agents,
O Silvennoinen, and R Renkonen, and M Hurme
September 1988, Experimental hematology,
O Silvennoinen, and R Renkonen, and M Hurme
November 1982, Journal of immunology (Baltimore, Md. : 1950),
O Silvennoinen, and R Renkonen, and M Hurme
February 1980, Nature,
O Silvennoinen, and R Renkonen, and M Hurme
January 1992, Annual review of immunology,
O Silvennoinen, and R Renkonen, and M Hurme
September 1993, Journal of the National Cancer Institute,
O Silvennoinen, and R Renkonen, and M Hurme
November 1980, Lancet (London, England),
O Silvennoinen, and R Renkonen, and M Hurme
October 1983, Zhurnal mikrobiologii, epidemiologii i immunobiologii,
O Silvennoinen, and R Renkonen, and M Hurme
February 1996, Journal of leukocyte biology,
Copied contents to your clipboard!