Isolation and expression in Escherichia coli of a cDNA clone encoding porcine pancreatic elastase. 1986

Y Shirasu, and H Yoshida, and T Mikayama, and S Matsuki, and J Tanaka, and H Ikenaga

We have cloned a DNA that is complementary to the messenger RNA that encodes porcine pancreatic elastase 1 from pancreas using rat pancreatic elastase 1 cDNA as a probe. This complementary DNA contains the entire protein coding region of 798 nucleotides which encodes an elastase of 266 amino acids, and 22 and 136 nucleotides of the 5' and 3'-untranslated sequences. When this deduced amino acid sequence was compared with known amino acid sequences, a carboxy-terminal 240 amino acids long peptide was found to be identical with a mature form of porcine pancreatic elastase 1, except for two amino acids. The porcine enzyme contains the same number of amino acid residues as the rat enzyme, and their amino acid sequences are 85% homologous. Taking the above findings together, we conclude that the cloned cDNA encodes a mature enzyme of 240 amino acids including a leader and activation peptide of 26 amino acids. We expressed the cloned porcine pancreatic elastase 1 cDNA in E. coli as a lac-fused protein. The resulting fused protein showed enzymatic activity and immunoreactivity toward anti-elastase serum.

UI MeSH Term Description Entries
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D010196 Pancreatic Elastase A protease of broad specificity, obtained from dried pancreas. Molecular weight is approximately 25,000. The enzyme breaks down elastin, the specific protein of elastic fibers, and digests other proteins such as fibrin, hemoglobin, and albumin. EC 3.4.21.36. Elastase,Pancreatopeptidase,Elastase I,Pancreatic Elastase I,Elastase I, Pancreatic,Elastase, Pancreatic
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

Y Shirasu, and H Yoshida, and T Mikayama, and S Matsuki, and J Tanaka, and H Ikenaga
January 1985, Gene,
Y Shirasu, and H Yoshida, and T Mikayama, and S Matsuki, and J Tanaka, and H Ikenaga
March 1985, Proceedings of the National Academy of Sciences of the United States of America,
Y Shirasu, and H Yoshida, and T Mikayama, and S Matsuki, and J Tanaka, and H Ikenaga
July 1996, European journal of biochemistry,
Y Shirasu, and H Yoshida, and T Mikayama, and S Matsuki, and J Tanaka, and H Ikenaga
June 1992, Biochimica et biophysica acta,
Y Shirasu, and H Yoshida, and T Mikayama, and S Matsuki, and J Tanaka, and H Ikenaga
May 1990, The Journal of biological chemistry,
Y Shirasu, and H Yoshida, and T Mikayama, and S Matsuki, and J Tanaka, and H Ikenaga
May 1995, Journal of biochemistry,
Y Shirasu, and H Yoshida, and T Mikayama, and S Matsuki, and J Tanaka, and H Ikenaga
July 2006, Sheng wu gong cheng xue bao = Chinese journal of biotechnology,
Y Shirasu, and H Yoshida, and T Mikayama, and S Matsuki, and J Tanaka, and H Ikenaga
June 1993, The Journal of biological chemistry,
Y Shirasu, and H Yoshida, and T Mikayama, and S Matsuki, and J Tanaka, and H Ikenaga
May 1993, European journal of biochemistry,
Y Shirasu, and H Yoshida, and T Mikayama, and S Matsuki, and J Tanaka, and H Ikenaga
December 1996, International archives of allergy and immunology,
Copied contents to your clipboard!