A simplified Gibson assembly method for site directed mutagenesis by re-use of standard, and entirely complementary, mutagenesis primers. 2022

Shunit Olszakier, and Shai Berlin
Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel.

Site-directed mutagenesis (SDM) is a key method in molecular biology; allowing to modify DNA sequences at single base pair resolution. Although many SDM methods have been developed, methods that increase efficiency and versatility of this process remain highly desired. We present a versatile and simple method to efficiently introduce a variety of mutation schemes using Gibson-assembly but without the need to design uniquely designated Gibson primers. Instead, we explore the re-use of standard SDM primers (completely overlapping in sequence) in combination with regular primers (~ 25 bps long) for amplification of fragments flanking the site of mutagenesis. We further introduce a rapid amplification step of the Gibson-assembled product for analysis and quality control, as well as for ligation, or re-ligation at instances the process fails (avoiding expenditure of added Gibson reaction mixtures). We first demonstrate that standard SDM primers can be used with the Gibson assembly method and, despite the need for extensive digestion of the DNA past the entire primer sequence, the reaction is attainable within as short as 15 min. We also find that the amount of the assembled Gibson product is too low to be visualized on standard agarose gel. Our added amplification step (by use of the same short primers initially employed) remedies this limitation and allows to resolve whether the desired Gibson-assembled product has been obtained on agarose gel or by sequencing of amplicons. It also provides large amounts of amplicons for subsequent ligations, bypassing the need to re-employ Gibson mixtures. Lastly, we find that our method can easily accommodate SDM primers with degenerate sequences. We employ our alternative approach to delete, replace, insert, and degenerate sequences within target DNA sequences, specifically DNA sequences that proved very resistant to mutagenesis by multiple other SDM methods (standard and commercial). Importantly, our approach involves the re-use of SDM primers from our primer-inventory. Our scheme thereby reduces the need (and time and money) to design and order new custom Gibson-primers. Together, we provide a simple and versatile protocol that spans only 4 days (including the added amplification step), requires minimal primer sets and provides very high yields and success rates (> 98%).

UI MeSH Term Description Entries
D012685 Sepharose Agarose,Sepharose 4B,Sepharose C1 4B,4B, Sepharose C1,C1 4B, Sepharose
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D016296 Mutagenesis Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS. Mutageneses
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D017931 DNA Primers Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques. DNA Primer,Oligodeoxyribonucleotide Primer,Oligodeoxyribonucleotide Primers,Oligonucleotide Primer,Oligonucleotide Primers,Primer, DNA,Primer, Oligodeoxyribonucleotide,Primer, Oligonucleotide,Primers, DNA,Primers, Oligodeoxyribonucleotide,Primers, Oligonucleotide

Related Publications

Shunit Olszakier, and Shai Berlin
August 1983, Nucleic acids research,
Shunit Olszakier, and Shai Berlin
January 2017, Methods in molecular biology (Clifton, N.J.),
Shunit Olszakier, and Shai Berlin
January 2015, Biotechnology, biotechnological equipment,
Shunit Olszakier, and Shai Berlin
January 1994, Methods in molecular biology (Clifton, N.J.),
Shunit Olszakier, and Shai Berlin
May 1994, Analytical biochemistry,
Shunit Olszakier, and Shai Berlin
April 2020, Protein science : a publication of the Protein Society,
Shunit Olszakier, and Shai Berlin
January 2016, Scientific reports,
Shunit Olszakier, and Shai Berlin
March 2001, BioTechniques,
Shunit Olszakier, and Shai Berlin
January 1994, Methods in molecular biology (Clifton, N.J.),
Shunit Olszakier, and Shai Berlin
January 2022, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!