Deposition of the terminal C5b-9 complement complex in infarcted areas of human myocardium. 1986

H Schäfer, and D Mathey, and F Hugo, and S Bhakdi

Poly- and monoclonal antibodies to neoantigens of the human C5b-9 complement complex, as well as polyclonal antibodies to C5, C8, and C9, were used to detect and identify C5b-9 deposits in human myocardial tissue. Immunocytochemical studies were performed on fresh-frozen autopsy material derived from patients with myocardial infarctions; in addition, in 17 of these patients, paraffin sections of formalin-fixed tissue were investigated. Sixteen autopsies from patients with noncardiac diseases were analyzed as controls. Without exception, C5b-9 positivity was registered selectively and exclusively on and in myocardial cells located within the zones of infarction. The selectivity of staining was confirmed by control reactions for succinic dehydrogenase activity performed in adjacent, respective double-stained sections. Most intensive staining with anti-neoantigen antibodies was observed in the peripheral areas of the infarctions. Weak staining for C3d, rather strong staining for C5 and C9, and intermediate staining with anti-C8 antibodies were observed in the same localizations. Stainings for C4 and IgA were negative, whereas immunocytochemical reactions for IgG and IgM revealed an irregular and very weak staining. Only very weak staining was also observed with a monoclonal antibody to complement S-protein, indicating that the terminal complement components were deposited mainly in the form of membrane-damaging C5b-9 complexes. Immunocytochemical staining for C5b-9 was found to represent a most sensitive tool for detection of ischemic myocardial lesions, permitting easy detection even of single cell necroses. As a working hypothesis, we suggest that initial ischemia may cause loss of the ability of the heart muscle cells to regulate complement turnover at the membrane level. The resulting deposition of C5b-9 on the cell membranes may contribute to functional disturbance and irreversible damage of myocardial cells during the infarction process.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009203 Myocardial Infarction NECROSIS of the MYOCARDIUM caused by an obstruction of the blood supply to the heart (CORONARY CIRCULATION). Cardiovascular Stroke,Heart Attack,Myocardial Infarct,Cardiovascular Strokes,Heart Attacks,Infarct, Myocardial,Infarction, Myocardial,Infarctions, Myocardial,Infarcts, Myocardial,Myocardial Infarctions,Myocardial Infarcts,Stroke, Cardiovascular,Strokes, Cardiovascular
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003165 Complement System Proteins Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY). Complement Proteins,Complement,Complement Protein,Hemolytic Complement,Complement, Hemolytic,Protein, Complement,Proteins, Complement,Proteins, Complement System
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly
D015938 Complement Membrane Attack Complex A product of COMPLEMENT ACTIVATION cascade, regardless of the pathways, that forms transmembrane channels causing disruption of the target CELL MEMBRANE and cell lysis. It is formed by the sequential assembly of terminal complement components (COMPLEMENT C5B; COMPLEMENT C6; COMPLEMENT C7; COMPLEMENT C8; and COMPLEMENT C9) into the target membrane. The resultant C5b-8-poly-C9 is the "membrane attack complex" or MAC. Complement Complex C5b-9,Membrane Attack Complex,C 5b-9,C5b-8-poly-C9,C5b-9,Cytolytic Terminal Complement Complex,Terminal Complement Complex,C5b 8 poly C9,Complement Complex C5b 9,Complement Complex, Terminal,Complex, Terminal Complement

Related Publications

H Schäfer, and D Mathey, and F Hugo, and S Bhakdi
September 1983, British journal of haematology,
H Schäfer, and D Mathey, and F Hugo, and S Bhakdi
March 1981, Proceedings of the National Academy of Sciences of the United States of America,
H Schäfer, and D Mathey, and F Hugo, and S Bhakdi
August 1985, Bioscience reports,
H Schäfer, and D Mathey, and F Hugo, and S Bhakdi
January 1985, Immunology letters,
H Schäfer, and D Mathey, and F Hugo, and S Bhakdi
May 1993, The Journal of clinical investigation,
H Schäfer, and D Mathey, and F Hugo, and S Bhakdi
November 1985, Atherosclerosis,
H Schäfer, and D Mathey, and F Hugo, and S Bhakdi
August 1987, Clinical and experimental immunology,
H Schäfer, and D Mathey, and F Hugo, and S Bhakdi
December 1978, Journal of immunology (Baltimore, Md. : 1950),
H Schäfer, and D Mathey, and F Hugo, and S Bhakdi
March 2006, Seminars in thrombosis and hemostasis,
Copied contents to your clipboard!